

FUTURE Vehicles WP3.1 –

Developments in Reduced Order Modelling

14th January 2014

Dr Małgorzata Sumisławska Control Theory and Applications Centre Coventry University

Imperial College

Content

- Introduction
- Overview of reduced order modelling
 - > Features
 - > Requirements
- Case studies of reduction via mathematical manipulation
 - > Supercapacitor model
 - > Transmission line model
- Case studies of reduction via the data driven approach
 - > Electric machine
 - > Battery
- Summary

• Aim – to reduce computational complexity of model yet retain sufficient accuracy for a specific purpose, i.e. control, diagnostics, prognostics

Imperial College

Loughborough University

Overview of reduced order modelling

- Model features
 - > Dynamics
 - > Non-linearity
- Requirements
 - > Purpose of model
 - > Accessibility
 - > Accuracy
 - > Operational range
 - > Frequency range

• Features and requirements inform and define the model reduction problem

Imperial College

Overview of techniques

- Classical approach
 - > Linear methods
 - Truncated balanced residualisation (TBR)
 - Singular perturbation analysis (SPA)
 - Krylov subspace methods
 - > Non-linear methods
 - Quadratic approximation
 - Trajectory piecewise linear approximation
- Data driven approach
 - > Parameter estimation and system identification methods
 - Estimation rules least squares, recursive least squares, refined instrumental variables (RIV), Kalman filter for parameter estimation
 - Model structures autoregressive, Box Jenkins, bilinear, Wiener, Hammerstein, state dependent parameter

Imperial College

Case study: Supercapacitor

• Equivalent circuit of supercapacitor

- *Z_p* complex pore impedance
- C capacitance
- r time constant
- inductance
- $\overline{R_L}$ leakage resistance
- Complex pore impedance approximated by n RC branches in series with capacitor

Case study: Supercapacitor

- Accuracy of *n*-branch model
- 58-branch (60 order) model used as baseline for model order reduction (MOR)

 Comparison of 3rd order model variants obtained via selected reduced order modelling techniques

Case study: Transmission line model

Cranfield

Imperial College

Loughborough University

Case study: Transmission line model

Cranfield

Imperial College

Loughborough University

[*] *B. Mirafzal, G.L. Skibinski, R.M. Tallam, D.W. Schlegel, and R.A. Lukaszewski.* "Universal induction motor model with low-to-high frequency-response characteristics". *IEEE Transactions on Industry Applications*, 43(5), pp. 1233–1246, (2007).

Case study: Electric machine

- AC induction motor
- Thermal chamber
- Temperature data acquisition (DAQ)
- Temperature range: 22.4 °C 210 °C with 20 °C increments
- NL4 precision impedance LCR analyser
- Frequency range of interest 100 Hz 10 MHz

Impedance measurements at different temperatures

Case study: Electric machine

- ECM proven to be suitable for electric machine modelling up to 130 °C
- Nonlinear optimisation used to find temperature dependent parameters

Imperial College

Case study: Battery

- 1. Data acquisition
 - > Voltage and SOC (outputs) responses to current input
 - > 36 short (80 seconds) data sets starting at different SOC (positive current input charge mode)
 - > Experiment repeated for negative current (discharging)
- 2. Obtained set of 144 LTI models using simplified refined instrumental variable (SRIVC) method
 - > Current to SOC models
 - > Current to voltage models
- **3.** Assumption: low order model can have linear structure, where parameters depend on SOC and sign of current

Imperial College

Case study: Battery

- Observations:
 - > current to SOC transfer function does not depend on SOC neither on sign of current
 - ightarrow transfer function described by linear 3rd order model

$$G_{soc}(s) = \frac{b_{11}s^2 + b_{21}s + b_{31}}{s^3 + a_{11}s^2 + a_{21}s + a_{31}}$$

> current to voltage relationship depends on

 \rightarrow soc

ightarrow sign of current

$$Z(s) = \frac{b_{02}(soc, m)s^2 + b_{12}(soc, m)s + b_{22}(soc, m)}{s^2 + a_{12}(soc, m)s + a_{22}(soc, m)} \qquad m = \text{sign}(i(t))$$

- **Result: 5th order piecewise state dependent parameter model**
 - \rightarrow because model is piecewise it can model hysteresis

Imperial College

Cranfield

Imperial College London Loughborough University

- Knowledge of the system/ high order model (features) as well as the purpose of reduced model (requirements) both define and inform the **reduction problem**
- A variety of techniques available for addressing model order reduction provides flexible approach to obtain models for specific purposes

Work to date:

- Techniques so far investigated are targeted towards control purposes Further work:
- Models for diagnostics and prognostics also to be considered

