2 Design Tools

Volker Pickert, Keith Pullen, Andrew Forsyth, Dave Stone

Project Management Meeting The University of Manchester Monday 7th April 2014

Scope of Theme

step 1

Online survey on:

Missing electrical, thermal and mechanical links of today's Simulators (Newcastle)

Step 2

Specific effects:

 Prediction of convective heat transfer in electric machines
 (City)

 Loss mechanism and heat removal in inductors for dc/dc converters
 (Manchester)

Step 3

Development of new heat removal techniques:

 Liquid cooler with locally changing thermal impedances
 (Newcastle)

 High thermal conductivity potting compounds
 (Sheffield)

Current results

Correlation of experimental results to Re_r from Bayley (1971) – breaks down at large gap ratio

Average heat transfer against inlet and rotational Reynolds number ratio for forced radial out-flow and gap ratio 0.0106

$$Re_r = \frac{C_w}{2\pi G R e_\omega}$$

Average heat transfer against inlet and rotational Reynolds number ratio for forced radial out-flow and gap ratio 0.0297

Current results

CFD results – 2D model

Forced flow dominates in laminar regime

Batchelor flow type (separate boundary layers)in turbulent regime for ALL forced outflow

1.00 0.80 30.60 ₩ 0.40 ar/re √r/re 0.20 0.00 0.5 7* 1.0 0.0

Ingress of ambient air at periphery causes drop in temperature, more pronounced in laminar regime

Velocity profiles at r/R = 0.99, G = 0.0106and C_w = 9e2 for forced radial out-flow

1.20

1.00

0.80

0.40

0.20

0.00

0.0

0.5

Velocity profiles at r/R = 0.99, G = 0.0106and C_w = 3.6e3 for forced radial out-flow Comparison of temperature profiles, r/R= 0.99, G = 0.0106, left: no forced flow, right: C_w = 3.6e3 forced radial out-flow

Current results

Comparison of CFD to experimental results

Forced outflow is better predicted by CFD - however - under prediction at the periphery still apparent and CFD model needs to be adapted

Comparison of CFD calculation and experimental measurement of radially resolved heat transfer against rotational speed for G = 0.0106 with no forced throughflow from Howey (2011)

Comparison of CFD calculation and experimental measurement of radially resolved heat transfer against rotational speed for G = 0.0106, $C_W = 3.6e2$ radial outflow Result is general under-prediction of average heat transfer results

Comparison of CFD calculation and experimental measurement of average heat transfer against rotational speed for G = 0.0106, $C_W = 3.6e2$ radial out-flow, turbulent correlations projected backward.

Progress and future work plan

Progress and future work plan

Planned future work

- 3D CFD model and improvements
- Paper disseminating 3D results
- Drum-type test rig commissioned
- CFD analysis for drum type model
- Experiments on drum-type rig
- Paper disseminating drum-type rig results
- Final output of design tool for windage, pressure drops and heat transfer
- Final PhD report

The University Of Sheffield.

Introduction

- Reasons for using encapsulants:
 - Enhance mechanical integrity of component
 - -Seal component against environment
 - Improve thermal performance of component by displacing trapped air within component
 - This can be further enhanced by combining the encapsulant with a thermally conductive filler

Filler Properties

- The filler used in this work is aluminium oxide powder
 - Theoretical density = 3.97 g/cm³
 - Thermal conductivity 30 W/m.K
- Poured Density = 0.84 g/cm³ (21.2% of theoretical density)
- Tapped Density = 1.11 g/cm³ (28.0% of theoretical density)
- Particles are approximately spherical

Microscope image of powder

Sample production methods
 Different methods were used to produce the samples to allow differences in filler distribution to be considered

Mixed	Rotated	Settled
A and a second sec		

Blocks with a 5% filler concentration (by volume) produced using each method

Sample production methods

- Mixed samples were produced to examine how the filler is distributed under normal conditions
- Rotated samples were produced in a manner which inhibits the settling of the filler particles
- Settled samples were produced to have a particularly uneven filler distribution (more so than the mixed samples)

The University Of Sheffield.

Results – Empirical models

Conclusions

• Dataset can be divided into three groups

Dilute (0% - 10%)	Intermediate (10% - 20%)	Full (20% +)
 Low filler loading level leads to only a small change in thermal conductivity Filler distribution not important 	 Manufacturing technique influences filler distribution Effects of this can not be ignored when modelling composites More homogeneous samples exhibit higher bulk thermal conductivity 	 Samples can be considered homogeneous as a full fill occurs regardless of manufacturing technique

Cooling System Model

CFD Analysis of the Liquid Cooler

Comparison of valve techniques

Dimensions

L3 ~ 12 mm block length @RT

SMA spring

SMA Spring - Preliminary design

SMA Spring heated by Joule effect expands genetering the actuation force for the release of the pin lock. A typical hysteresis cycle for the SMA spring (fig. 1 below) shows how shape memory alloy starts the typical transformation over the As (autenite Temperature)

$22 \times 30 \times 32mm^3$

Solenoid valve

(Orion Valves Ltd, Japan)

$26 \times 26 \times 11 mm^3$

Micro-valve (Kemikro, Germany)

Benefit of using the flow rate actively

Dissimilar to conventional constant flow rate, a periodic flow rate is calculated based on the pressure vs flow rate curve of the system (pump pressure, pipe diameter and valve speed).

CFD simulation results

1. CFD Analysis of the Liquid Cooler

Held, M., et al. "Fast power cycling test of IGBT modules in traction application." 1997 International Conference on. Vol. 1. IEEE, 1997. Auerbach, F., and A. Lenniger. "Power-cycling-stability of IGBT-modules." Thirty-Second IAS Annual Meeting, IAS'97., Vol. 2. IEEE, 1997.

Lifetime of power modules increases but:

- Lifetime is now dependent on the reliability of the valves. It is predicted that the lifetime is low due to embedded mechanical parts.
- The frequency of the valves is low. Although the Orion valve can work up to 1kHz a faster operating valve would be preferable.
- The size of all valves are still too large.

New approach: use pumps rather valves

Magneto Hydro Dynamic (MHD) Pump with liquid metal cooling medium

Physical layout

Liquid metal vs. water

Conclusion

- 1. Liquid metal cooler has better thermal performance than water;
- 2. Liquid metal cooler has simpler structure than the proposed coolers with micro-valves;
- 3. MHD pump is more reliable and quieter compared to micro-valves have no moving components;
- 4. MHD pump is easy to control as the power is proportion to the given control current;
- 5. MHD pump can operate above 1kHz.

Next Steps

1.Simulation results at high frequency must be further investigated;

2.Construction is on its way.

The University of Manchester

The University Of Sheffield.

1. CFD Analysis of the Liquid Cooler

Multi-layered structure is simplified as one surface with equivalent R_{th} and C, as the base plate is the biggest contributor to the total thermal resistance and capacity.

1. CFD Analysis of the Liquid Cooler

Initial condition of the simulation:

1. On/off frequency of IGBT: 0.5

2. Flowrate of the conventional cooler is set as Q = 1.07E3 Kg/s.

3. The max. flowrate of the liquid cooler is set as $\sqrt{2}Q = 1.51E3 Kg/s$, which is conservative value (usually among $[\sqrt{2}Q, 2Q]$) based on the flow characteristics of the pump, valve and flow channels.

