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I. INTRODUCTION 

Roughly two thirds of all energy generated is lost as waste 
heat [1]. Thermoelectric power generation provides a means to 
convert this waste heat into useful energy. Yet conventional 
methods and materials typically provide only a low 
thermoelectric efficiency. Nanostructuring is a promising 
approach for next generation thermoelectric materials yielding 
ultra-low thermal conductivities and enhanced thermoelectric 
performance. More specifically, some of the lower thermal 
conductivities in nanocrystalline materials have been achieved 
in materials that include hierarchically sized structures 
scattering phonons of various wavelengths, thus reducing 
phonon transport throughout the spectrum [1]. Introduction of 
nanoporous structures referred to as ‘holey’ materials, allows 
for ultralow thermal conductivity- even below the amorphous 
limit [2]. Thus elaborate simulations, that can account for all 
nanostructured details are needed to understand heat transport.    

  

II. APPROACH 

In this work, we describe the development of a large 

scale, comprehensive Monte Carlo simulator to model thermal 

transport in nanostructured materials with a large and arbitrary 

degree of hierarchical disorder. Our simulations are based on 

the single phonon Monte Carlo algorithm to solve the 

Boltzmann Transport Equation for phonons, which provides 

high computational efficiency, as well as accuracy [3]. The 

phonons are initialized as per a ‘single-phonon Monte Carlo’ 

approach which differs from the multi-phonon Monte Carlo 

approach described in various works in the literature [4, 5]. In 

the single phonon approach one phonon is simulated at a time 

from the domain boundary/edge and propagates through the 

simulation domain until it exits at either edge. Once the 

phonon exits the next phonon is then initialized.  

The polarization probability, frequency, velocity, 

and energy of each phonon is drawn from the dispersion 

relation ω(k), modified by the Bose Einstein distribution at the 

given temperature. The fit for the dispersion relation ω and the 

group velocity vg is obtained as by Pop et al. [5] using 

equations 1 and 2 below.  
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Phonons either scatter or are in free flight. Scattering 

of phonons is caused either by interaction with geometrical 

features or by three-phonon internal scattering (Umklapp 

processes). The three-phonon scattering, which is chiefly 

responsible for the change in temperature of the domain, is 

simulated in the relaxation time approximation and is a 

function of temperature and frequency. This is given as,  
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where 𝜔 is the frequency, 𝑇 the temperature, the constant  𝐵U
TA 

= 5.5 × 10-18 s, and 𝜔1/2 is the frequency corresponding to 

𝑘 = 𝑘𝑚𝑎𝑥/2  [6,7].  Repeated iterations and scattering events 

give a steady state thermal gradient as seen in Fig. 1. 

  

 
 

Fig. 1. Simulation scheme depicting a phonon initialized from the hot junction 

(TH) propagating through the simulation domain undergoing internal (phonon-
phonon) and boundary scattering and exiting the simulation domain to the 

right. The simulation domain here has the hot junction with a temperature set 

at 310 K (yellow) and a cold junction with a temperature of 290 K (green). 5 
million phonons are inserted at both junctions and allowed to propagate 

through the simulation domain, and a thermal gradient is thus established.   

Comparing the energies of the phonons entering and exiting the simulation 
domain a phonon flux is obtained.    

Considering the energy of the phonons entering (𝐸𝑖𝑛
ℎ , 𝐸𝑖𝑛

𝑐 ) and 

leaving (𝐸𝑜𝑢𝑡
ℎ , 𝐸𝑜𝑢𝑡

𝑐 ) the simulation domain from either side, an 

average phonon flux is determined which is used to extract the 

thermal conductivity. Thus, we do not extract thermal 

conductivity by computing the flux that crosses a particular 

cross section of the domain but by computing the net flux 

through the entire simulation domain. The finite size of the 
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simulation domain is overcome by using the average mean-

free-path to scale the simulated thermal conductivity to the 

actual thermal conductivity for an infinite channel length. This 

method makes much easier the book-keeping of all phonon 

attributes and could be more efficient in terms of memory 

requirements with the same accuracy as the more 

‘conventionally’ used methods. We note that this approach is 

common in electronic transport Monte Carlo simulations, and 

we adopt it here for phonon transport [8, 9]. Geometry induced 

scattering of phonons on grain boundaries, surface boundaries, 

several defects, voids, and dislocations as in realistic 

nanocomposite which all contribute to reducing thermal 

conductivity, are investigated; always while keeping in mind 

that significant degree of crystallinity should be allowed to 

keep the electronic conductivity high. The effects of boundary 

roughness, porosity and disordered geometry are also 

examined. We believe that the code could play a very useful 

part in optimizing thermal conductivity reductions not only in 

Si-based materials, but in various other types of 

nanostructured materials in general.   

 

III. RESULTS 

The simulator was validated for the bulk case. Structures like 

grain boundaries (seen in Fig.2 (a)) and nanoporous structures 

(as seen in Fig. 2 (c)) were considered where geometry 

induced scattering was observed. 

  

 
 

Figure 2. (a) Example of a typical nanocrystalline geometry simulated with 
average grain dimension <d> of 140 nm. (b) Schematic of the scattering 

mechanism for grain boundary scattering, indicating the initial angle of the 

phonon θ from the normal (black dashed line), grain boundaries (black lines), 

initial path of the phonon (red line) and probable paths of the phonon after 
scattering (red dashed lines). The probability of scattering is a function of the 

phonon wave vector, the roughness of the boundary Δrms and the angle of the 

phonon with the grain boundary θGB. (c) Example of a typical nanoporous 
geometry simulated, for an ordered rectangular case, with porosity of about 

10%. (d) Schematic of scattering mechanism for pore scattering, indicating 

the pore boundary (blue line), the initial angle of the phonon θin, and potential 
new angle of propagation θnew depending on specularity parameter p. Probable 

paths of the phonon after scattering for both diffusive (red dashed lines) and 

specular (red solid line) are also depicted. In the case of fully specular 
scattering, p = 1 and the phonon is reflected with a θnew equal in magnitude to 

the initial angle θin. In the case of fully diffusive scattering p = 0. 
 

Following this, more complex geometries were simulated 

giving reduced thermal conductivities. In the case of porous 

silicon nanomaterials it was verified that the effect of porosity 

is stronger than that of boundary roughness. 

 
 

Figure 3. Effect of pore size and density on (κ) is examined. Here, a certain 

porosity, is achieved by utilizing pores of different sizes (D = 60 nm, 50 nm, 
20 nm, and 10 nm depicted by the blue, green, red, and black lines, 

respectively). Typical geometries for a rectangular arrangement of pores 

giving the same porosity for different pore sizes D = 60 nm and D = 10 nm 
are depicted in (a) and (b) respectively. These are for a fixed specularity p = 

0.1. It is observed that reduction in pore diameter leads to lower thermal 

conductivity at the same porosity. However, this effect diminishes as porosity 
increases. 

 

We also show (in Fig. 3) that at the same porosity, a larger 

decrease in thermal conductivity is achieved by increasing 

pore number density than by increasing the pore diameter. An 

almost 50% decrease in thermal conductivity is observed with 

a decrease in pore diameter from D = 60 nm to D = 10 nm at 

the same porosity (observed for porosities from 15 % to 25%); 

however, this effect diminishes at higher porosities (φ = 35% 

and above). Our results would be useful in the design of 

nanostructured thermoelectric materials with ultra-low 

thermal conductivities. 
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