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Electronic noses - development and future 
prospects 

M.A. Craven, J.W. Gardner* 
Coventry, UK 

P.N. Bartlett 
Southampton, UK 

The human olfactory system is still regarded 
as the most important ‘analytical instrument’ 
for the assurance of odour quality in many 
industries, such as food and drinks. Until 
recently, there has been no major advance 
in the analytical methods employed to assess 
odour. Now, research on artificial olfaction in 
the late 1980s and early 1990s has led to sig- 
nificant advances in this field and to the 
launch of commercial instruments (called 
‘electronic noses’) being used in a variety of 
industries (including food, water and brew- 
ing). An electronic nose comprises an array 
of chemical sensors, where each sensor has 
only partial specificity to a wide range of 
odorant molecules, coupled with a suitable 
pattern recognition system. This paper 
briefly reviews the development of artificial 
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olfaction and discusses future trends in elec- 
tronic nose technology. 

1. Anatomy of a smell 

The main sensory system used by humans to 
sense flavour is olfaction, therefore if the flavour 
of a particular substance is to be characterized, the 
use of smell can often provide us with suitable 
information [ 11. In order to understand the opera- 
tion of an ‘electronic nose’ we must first analyse 
what is involved in ‘smelling’ and therefore what 
constitutes a ‘smell’, i.e., an odour. Odorant mole- 
cules have some basic characteristics, the primary 
ones being that they are light (relative molecular 
masses up to approximately 300 Da), small and 
polar and that they are often hydrophobic. A simple 
odour, for example an alcohol, contains only one 
chemical component. A complex odour is a mixture 
of many different odorant molecules each in vary- 
ing concentration; for example, the headspace of 
coffee is made up of hundreds or even thousands 
of different molecules. 

Table 1 shows the typical constituents of a coffee 
aroma. It is clear that we perceive coffee as having 
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Table 1 
Major constituents of coffee aroma by chemical class [ 1 ] 

Class 

Furans 
Pyrazines 
Pyrroles 
Ketones 
Phenols 
Hydrocarbons 
Esters 
Aldehydes 

Number Class Number 

108 Oxazoles 28 
79 Thiazoles 27 
74 Thiophenes 26 
70 Amines 21 
44 Acids 20 
31 Alcohols 19 
30 Pyridines 13 
28 Thiols/sulfides 13 

TOTAL 631 

an easily distinguishable and unmistakable odour, 
but it has a complex odour with many constituents, 
each of which may change with time. Not only is 
the anatomy of a smell complex and subtle but the 
levels of odour that a panel of human experts can 
detect can be very low (e.g., sub-ppb). 

involved in human olfaction. In recent years a 
greater understanding of human olfaction has 
been achieved [ 3,4] and this in turn has led to 
improvements in the design of an electronic 
nose. Fig. 1 illustrates the basic components of 
the human olfactory system and compares it with 
the construction of an electronic nose. The human 
olfaction system consists of three essential ele- 
ments [ 5 1: an array of olfactory receptor cells 
situated in the roof of the nasal cavity, the olfac- 
tory bulb which is situated just above the nasal 
cavity, and the brain. The electronic nose also 
has three roughly equivalent elements: the odour 
sensor array, data pre-processor, and pattern 
recognition (PARC) engine. 

Table 2 shows the threshold of odorant mole- 
cules in water that can be detected by a normal, 
healthy person. It can be seen that there is a wide 
range of values and that, in some cases, levels 
down to fractions of one part per billion can be 
detected. On the other hand, for compounds such 
as ethane, butane and acetylene, olfactory thresh- 
olds are much higher (parts per thousand). 
Attempting to detect complex odours containing 
components active at the very lowest levels by 
conventional analytical techniques was something 
that, until recently, was either very expensive or 
not feasible. It is therefore not surprising that tra- 
ditional methods of odour assessment have sur- 
vived for so long. 

Fig. 2 shows how signals are mapped from the 
odour domain to the classification domain (the 
PARC engine includes the pre-processing stage in 
order to simplify the diagram). It can be seen here 
how odour ‘A’ is first shown as a vector in odour 
space where each dimension corresponds to the 
concentration of a single odorant molecule consti- 
tuent, then as a vector in signal space where each 
dimension corresponds to the output from a single 
sensor in the sensor array and finally as a vector in 
classification space where each dimension corre- 
sponds to some arbitrary odour quality determined 
by the PARC engine. Although only two dimen- 
sions are shown in the diagram, the dimensionality 
of the vector that described odour ‘A’ reduces as it 
passes from one stage to another. 

2. Human olfaction and the connection 
with electronic noses 

Electronic nose research (a brief description of 
the history of electronic noses has been published 
previously [ 2 1) is inspired by the mechanisms 

Table 2 
Thresholds for various common odours [ 1 ] 

The odorant molecules from an object being 
smelt are inhaled through the nostrils and enter 
the nasal cavity. They then come into contact 
with the olfactory neurones located in the olfactory 
epithelium high up in the nose. These olfactory 
neurones are terminated in cilia (hairs) which lie 
in a thin, aqueous, mucous layer covering the 
epithelium. Special olfactory binding proteins 
located in these cell membranes interact with odor- 
ant molecules and cause excitation in the neurone. 
The number of different binding proteins is not 
known but has been estimated to be between 100 

Odour type 

Green leaves 
Rose 
Thyme 
Lemon 

Threshold 
(in water) 

0.32 ppm 
0.29 ppm 

86 ppb 
10 ppb 

Odour type 

Off-flavour in white fish 
Green pepper 
Grapefruit 

Threshold 
(in water) 

0.01 ppb 
0.001 ppb 
0.00002 ppb 
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Electronic Nose 
Eleclronic PARC 

Engine 

“Coffee” 

Human Olfaction 

Fig. 1. Diagram showing the three basic elements that 
comprise an electronic nose and a human nose. 

and 1000. Many olfactory neurones appear to 
express only one of the many possible olfactory 
binding proteins and, since the number of olfactory 
neurones is large (ca. 100 million), there is there- 
fore a large population of olfactory neurones con- 
taining any given olfactory binding protein. The 
different olfactory binding proteins have partially 
overlapping sensitivities to odorants. For example, 
a particular olfactory neurone or set of neurones 
will respond to many different odorant molecules 
- they are not highly specific in their interactions. 
Similarly, an electronic nose employs a sensor 
array where each sensor is non-specific. Various 
sensor technologies are employed in electronic 
noses, the most popular ones that are now used in 
commercial instruments being semiconducting 
metal oxides (for example, catalytically doped tin 
oxide) and electronically conducting polymers. 
The former are sensitive to combustible gases, 
operate at high temperatures (e.g., 400°C) and 
use thick-film technology, whereas the latter 
respond to polar compounds, operate near room 
temperature, offer a large choice of types and are 
manufactured electrochemically. Fig. 3 shows 
photographs of two recently developed Warwick- 
Southampton microdevices: (a) a discrete device 
comprising a conducting polymer chemoresistor 
with a laterally integrated gold resistance heater 
on a TO-8 header and (b) a hex device (made at 
the Institute of Microtechnology, Neuchatel, Swit- 
zerland) comprising six MOS chemoresistors with 
vertically integrated platinum resistance heaters on 
a 0.1 inch pitch 14-pin d.i.1. header. The signals that 
form the output of a sensor array do not provide a 
spectrum of odour constituents in the way that, for 
example, a gas chromatograph does but rather 
information relating to the qualities of the odour 
which are characterized by particular sensor 
response signatures [ 3 1. These signatures or artifi- 
cial ‘smellprints’ can then be processed in a pattern 

recognition engine and classified as smells (e.g., 
floral) in the artificial olfactory system [ 61. 

The signals generated by the olfactory neurones 
feed into the olfactory bulb, which contains three 
functional layers: the glomeruli, the mitral cells and 
granular cell layer. The overall function of this 
stage is to reduce noise by compressing the signals 
and amplifying the output, this enhances both the 
sensitivity and selectivity of the olfactory system. 
Finally, the signals are processed into a form sui- 
table for input to the brain where it is learnt and 
subsequently classified. Similarly, the pre-proces- 
sing stage in the electronic nose processes the sig- 
nals from the sensor array into a form suitable for 
input to the PARC (pattern recognition) stage. Fac- 
tors such as sensor drift and noise can be reduced by 
pre-processing the signals; this has been shown 
elsewhere [ 7 1. For example, a favourable choice 
of sensor parameter for an n-type MOS sensor is the 
fractional change in conductance G, where the out- 
put for one sensor (from an array of i sensors) for a 
particular odour type, j, is xij, which is given by 

xij = (~odour -Gtir)/Gair G (Max-Vmin)/Vmax (1) 

Fig. 4 shows how the parameters V,,, and Vmin are 
defined from the transient response of a typical 
resistive odour sensor. This processing yields a 
vector of i dimensions for a given response to an 
odour, which is sometimes normalized so that con- 
centration dependence is either eliminated (linear 
sensors) or reduced (non-linear sensors) and qua- 
litative information is enhanced. In certain electro- 
nic nose applications it is necessary to know the 
odour intensity and so the norm of the array vector 
is used in the recognition system. 

The final stage in the human olfactory process is 
the brain - it is here that odour classification takes 
place [ 3 1. More specifically, the piriform cortex 
within the brain performs associative memory 
functions where olfactory cell response signatures 
are associated with notions of smells (although 
other areas of the brain such as the hippocampus 
are also involved). These associative functions 
have many properties: 
l Similar patterns from the olfactory bulb can 

lead to vastly different outputs from the brain, 
i.e., chemically similar odours can be perceived 
as having very different qualities. 

l Unknown inputs from the olfactory bulb are 
processed and the best solution is output from 
the brain; therefore, when a new and unknown 
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Mapping of odours on to classification space in 
an electronic nose. 

odour is encountered previous associations are 
used to give generalizations. 

l New odours can be learnt throughout the 
lifetime of the subject, allowing adaptation to 
many environments. 

l Changes in input signals from factors such as 
noise or olfactory cell regeneration (the olfac- 
tory cells regenerate every 3040 days) do not 
cause large changes in the output from the brain 
due to the massively parallel and convergent 
system. 
Similarly, artificial neural networks ( ANNs) 

have been used in electronic noses in order to clas- 
sify odours [ 74 1. It has been found that the use of 
ANNs for pattern recognition show some benefits 
(such as being able to handle non-linear signals 
from the sensor array) when compared with the 
established multivariate chemometric techniques. 
The most popular type of ANN that is employed 
is the feed-forward multilayer perceptron (MLP) 
trained using the error-correction back-propagation 
algorithm (BP) [ 91. Fig. 5 shows the typical layout 
of an MLP. Pattern recognition using a BP has two 
phases: first the MLP is trained using a data-set of 
sensor responses to known odours (training data- 
set) and second the MLP is tested on a different 
data-set of sensor responses to known odours (test- 
ing data-set). If, after training and testing, the per- 
formance of the MLP is satisfactory then the MLP 
design is finished. If, however, the performance is 
not satisfactory then a new MLP is designed using 
different network design parameters, such as the 
number of hidden nodes, node output function 
and training parameters and finally it is trained 
(again using the training data-set). The new MLP 
is tested (using the testing data-set) to ascertain if 
the performance is satisfactory. This whole process 

can be repeated as many times as is necessary. 
Initial design parameters can be estimated to be at 
their optimum but in practice the exact value for 

a 

b 

Fig. 3. Photographs of two Warwick-Southampton 
electronic odour sensors fabricated with microelec- 
tronic technology: (a) a discrete polymeric chemore- 
sistor; (b) a hex metal oxide semiconducting MOS 
array device. Each device has integrated resistance 
heaters to control the operating temperatures of the 
odour-sensitive materials (indicated by small black 
areas). 
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these parameters is ‘fine tuned’ by experimenta- 
tion. Once an MLP design has been found to be 
satisfactory for a particular set of odours it is pos- 
sible that the same design will also be satisfactory 
for other similar problems. 

BP is a simple training algorithm using gradient 
descent to minimize the error (i.e., difference 
between the desired output and the actual output). 
This training technique boosted interest in ANNs 
and has led to the application of ANNs in many 
industries. The basic principle employed in this 
training technique is that the error for a given 
input vector is propagated back to the hidden 
nodes in order for the weights input to the hidden 
nodes to be adjusted so that the error is minimized. 
Once the error has been minimized by an adjust- 
ment of hidden node input weights, the error is 
propagated back to the output nodes where the 
weights within the output nodes are adjusted so 
that the error is minimized. Once all the weights 
have been processed and the error is minimized 
the next input vector is input to the MLP and the 
corresponding output pattern is used for calculation 
of the error for this next input. This description of 
BP has been deliberately kept brief; however, sev- 
eral publications have discussed the topic in greater 
detail [ 9,101. 

The parallel between human olfaction and 
machine olfaction (electronic nose) is often quoted 
and may be argued to be desirable certainly in func- 
tion if not in the precise architecture [ 111. 

:= 
odour clean air 

*time 

Fig. 4. Typical response of a MOS chemoresistive 
sensor to an odorant from a flow injection system. 
The voltage output is proportional to the device resist- 
ance so II,,, is the baseline resistance and Vmi, the 
resistance in the odour. 

odour 
j 

node 

uts 
j=l 

odour 
class 

j=2 

Fig. 5. General architecture of a feed-forward multi- 
layer perceptron, here with three hidden processing 
nodes, two output processing nodes, three inputs 
(sensor type i= l-3) and two outputs (odour class 
j=l or 2). Ea c node performs a weighted sum of h 
its inputs followed by a non-linear activation function 
on the result (usually sigmoid) and outputs a single 
value. 

3. Odour analysis using an electronic 
nose 

There are two main odour sampling methods: 
static headspace analysis (SHA) and flow injection 
analysis (FIA). SHA is the more popular and low- 
cost method, the sample to be ‘smelt’ is placed in a 
container, and left so that the headspace becomes 
saturated with the odour. This headspace is then 
transferred into the chamber containing the sensor 
array. The initial magnitude of response of the sen- 
sor array to the odour is large because the gas reach- 
ing the sensor array is saturated with the vapour, 
after a time the headspace is then removed from the 
chamber and replaced by clean air and the sensor 
responses return to their baseline values. The sen- 
sor response shown in Fig. 4 is a typical example of 
this. FIA is usually computer automated and 
employs a method where background gas (usually 
clean air) is constantly being pumped into the sen- 
sor chamber. Gas containing the odour is injected 
into the background gas before it reaches the sensor 
chamber. The ratio of the mixture of background 
gas to odour gas can be precisely controlled. 

Unwanted variability in the data output from the 
sensor array is related to system complexity, a 
major factor being design and implementation of 
the sampling system. In order to optimize the cost 
of the electronic nose system, the sample/system 
variability must match the application: 



trends in analytical chemistry, vol. 75, no. 9, 1996 491 

l High variability-short-term process variation 
detector. 

l Medium variability-triangular test, with quan- 
titative similarity. 

l Low variability-long-term odour standard for 
quality assurance 
The lower the variability the more difficult the 

design, and therefore smell library construction is 
at the forefront of electronic nose research and 
application. It may be desirable to limit variation 
due to environmental factors, for example ambient 
air temperature where air is used as the carrier me- 
dium. However, in reality electronic noses need to 
operate in conditions that are not ideal such as out- 
doors where air temperature can vary greatly from 
day to day. Therefore, when factors causing varia- 
tion cannot be controlled the design of the nose 
should permit their monitoring and on-line para- 
metric compensation. This can be implemented in 
sensor array design through the use of, for example, 
a temperature sensor placed in the sensor chamber 
and temperature compensation in the sensor pre- 
processing and pattern recognition stages. 

Visualizing the signal output from the sensor 
array and pre-processing stage often give clues to 
problems in electronic nose design, for example, if 
some or all of the types of sensors in the array are 
suitable. A popular method for visualizing signals 
is polar plots, in which the sensor responses are 
plotted radially around a circle. Fig. 6 shows two 
such polar plots, one for a sample of hardened 
canola oil and another for bleached soybean oil. 
From these plots the difference between the odours 
is apparent and the individual sensor responses can 
be isolated and analysed. 

r 
a 

1 r 

As mentioned earlier, ANNs are often employed 
as pattern classifiers in electronic noses [ 12,13 1. 
However, it is also useful to use other methods in 
order to benchmark ANNs or to analyse the infor- 
mation contained in the data and from this to design 
more optimal pre-processing methods and ANNs. 
Examples of such multivariate pattern analysis 
techniques are 
0 Principal components analysis. 
l Discriminant function analysis. 
0 Cluster analysis. 

Fig. 7 shows a plot of the first linear discriminant 
function against the second for 12 replicate samples 
of six different types of sausage (labelled El to 
E6). The various groupings are easy to distinguish 
and tell us about the information content within the 
data, such as the presence of bias or noise. Various 
pattern recognition techniques can be used together 
or one technique can be used to analyse the data and 
permit the design of another. 

4. Why measure smells? 

There are many potential applications for an 
electronic nose [ 14-17 1; some of these are the 
checking of raw material, for example quality, 
taints and off-flavours; process monitoring, for 
example odour quality during processing; and 
product quality, for example of foods, drinks, per- 
fumes, chemicals and pharmaceuticals. 

Commercial electronic noses are only a recent 
phenomenon; their sales volumes are currently 
low (world market at about 200 in 1995) and 
their cost is relatively high (&20 000-00 000). 

1 

Fig. 6. Polar plots illustrating the response of a 12-element commercial polymer nose to the headspace of (a) 
hardened canola oil and (b) bleached soybean oil (Courtesy of Neotronics Scientific Ltd.). The response of each 
sensor in the electronic nose is plotted and so differences can be quickly seen. 
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The leading commercial instruments available are 
0 Aromascanner (Aromascan, UK) 
l e-NOSE 4000 (Neotronics Scientific, UK) 
l Fox Intelligent Nose (Alpha MOS, France) 

The potential market for the electronic nose is 
large and the small volumes that are currently sell- 
ing will increase as electronic nose technology 
improves. Also, production costs should fall as 
components such as the sensors themselves 
become cheaper to manufacture in larger volumes. 

5. New developments in electronic nose 
technology 

Improvement in electronic nose technology is 
important if its potential is to be realized. Possible 
improvements in technology are new odour-sen- 
sing materials, new transducers, multitype or 
hybrid noses, smarter pattern recognition techni- 
ques and micronoses. 

New odour-sensing materials will need to be able 
to detect a wider range of odorant molecules and to 
be able to discriminate smaller details in odours. 
These materials could be newly developed semi- 
conducting oxides, conducting polymers, poly- 
mer/dielectric coatings, organic cage compounds 
or biological films. New transducers include piezo- 
electric (BAW and SAW) and catalytic gate MOS- 
FET devices (others are micropellistor and opto- 
electronic). Multitype (or hybrid) noses mix 
sensor and/or transducer technologies in order to 
increase the ‘range’ of the nose and enhance dis- 
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crimination. This leads to more complex interface 
electronics and signal pre-processing and possibly 
a more complex PARC. A ‘smarter’ electronic nose 
might employ more advanced ANN methods, for 
example methods even more closely related to bio- 
logical neural systems like recurrent networks 
which oscillate in real time (as opposed to MLPs 
which are static). The advantages of a smarter nose 
could be 
l Reduced sensitivity to temperature 
l Reduced sensitivity to humidity 
l Reduced interference to other gases 
l Interference diagnostic 
l Poisoning diagnostic 

Because microelectronic devices are becoming 
cheaper and more powerful, the computing over- 
head that was such a barrier for ANN research in the 
past is no longer such a major problem and so the 
image of a ‘smarter’ nose may well soon be a rea- 
lity. Problems such as sensor drift, noise and non- 
linearities in sensor response will be increasingly 
handled by the ‘smarter’ nose. 

Lastly, the development of a ‘micronose’ will 
create new markets which are currently excluded 
by the large size and weight, cost and power con- 
sumption of the current laboratory-based instru- 
ments. A micronose will open up a whole new 
range of applications. Advances in silicon micro- 
machining techniques will means that the sensor 
arrays will become miniaturized thus reducing 
size, power consumption, weight and cost. A 
micronose could be employed in situations where 
a human would not be able to go, for example inside 

q El 

0 E2 

q E3 

n E4 

- E5 

- E6 

I 

Fig. 7. Results from a linear discriminant function analysis of 12 replicate odours of six different types of sausage in 
a six-element MOS chemoresistive nose. The distance of the groups from each other indicates the chemical 
similarity of the odour. (Courtesy of Alpha MOS, France). 
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a human body. For many potential micronose appli- 
cations only the sensor array need be miniaturized, 
the signals from the miniature sensor array could be 
transmitted over long distances, if necessary, in 
order that a more powerful (and therefore possibly 
not miniaturized) computer to be used to employ 
advanced and complex PARC techniques. The sen- 
sor signals could even be sent using an optical or 
wireless computer network. 

As the applications for electronic noses become 
more complex and demanding, the emergence of 
application specific electronic noses (ASENs) 
will become more numerous. Possible applications 
are environmental, e.g., inbuildings, cars and 
planes, biotechnology and medical diagnostics. 
The future for electronic noses looks very promis- 
ing, so expect to see them in your home one day! 
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