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Abstract 

Here we report on the successful low-temperature growth of zinc oxide nanowires (ZnONWs) on silicon-on-

insulator (SOI) CMOS micro-hotplates and their response, at different operating temperatures, to hydrogen in air. The 

SOI micro-hotplates were fabricated in a commercial CMOS foundry followed by a deep reactive ion etch (DRIE) in 

a MEMS foundry to form ultra-low power membranes. The micro-hotplates comprise p+ silicon micro-heaters and 

interdigitated metal electrodes (measuring the change in resistance of the gas sensitive nanomaterial). The ZnONWs 

were grown as a post-CMOS process onto the hotplates using a CMOS friendly hydrothermal method. The ZnONWs 

showed a good response to 500 to 5000 ppm of hydrogen in air. We believe that the integration of ZnONWs with a 

MEMS platform results in a low power, low cost, hydrogen sensor that would be suitable for handheld battery-

operated gas sensors. 
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1. Introduction 

There has been increasing demand of detecting toxic and inflammable gases for industrial, 

environmental and many other applications. These demands have led to the development of a range of 

different gas sensor technologies. However, these discrete gas sensors are expensive (average cost is €10) 
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and consume high power (~200 mW). The high cost is due to the low volumes of production (hence made 

manually/semi-automated) and also the use of separate interface electronics using discrete components to 

monitor the sensor output. The semi-automated low volume production often makes their performance 

have poor reproducibility with perhaps 20% or more batch-to-batch variation. This has inspired our 

research group to develop gas sensors on a CMOS platform – because batch production in CMOS can 

give more reliable and reproducible sensors and also high volume production reduces per unit sensor 

device cost. In addition, the ability for on-chip integrated circuitry gives the sensor ‘value added’ features 

at no extra cost. However gas microsensors developed on CMOS can also benefit from gas-sensitive 

nanomaterials (because of their higher surface to volume ratio) to achieve higher sensitivity. But to grow 

nanomaterials often requires very high growth/anneal temperatures (500 to 850°C) and harsh chemicals 

that are not suitable for CMOS substrates. Here, we have developed a low temperature hydrothermal 

method to grow ZnONW on a micro-hotplate sensing area without damaging the CMOS substrate. The 

sensor device is essentially a low power thin membrane micro-hotplate with p+ silicon resistor (for 

heating) and top interdigitated metal electrode (for measuring sensing material resistance). ZnONWs 

show promising response in the presence of ppm levels of hydrogen and its lower cost and lower power 

consumption would be suitable for future handheld battery-operated gas sensors.  

2. Micro-hotplate structure 

The resistive gas microsensor incorporates both heater and sensing structures. It contains a p+ silicon 

micro-heater of diameter 150 µm and interdigitated electrodes to contact to the sensing materials. The 

electrodes were made from the top metal layer, which were exposed during the bond pad opening process 

steps. The micro-heater was isolated from rest of the chip by a thin oxide/nitride membrane of diameter 

564 µm. The sensor was designed in Cadence (v5.0) and fabricated from a commercial foundry using a 

1.0 µm SOI CMOS process. The membrane was formed at the wafer level by deep reactive ion etching 

(DRIE) from a second MEMS foundry, after the CMOS process was complete. Exposed aluminium 

electrodes form oxide when come in contact with air; hence, electroless (bump bonding) plating was 

carried out at the wafer level to deposit nickel/gold (Pac Tech, Germany) on top of the aluminium 

electrodes. A cross-sectional schematic of the device is shown in figure 1(a) and the top view of the 

fabricated device is shown in figure 1(b). The micro-hotplates were characterised at different parts of the 

wafer and also from wafer to wafer. A typical power vs temperature plot is shown in figure 2, from which 

it can be seen that it consumes only 23 mW to reach 300°C (with ZnONW coating on top). The structure  

 
 

Fig1. (a) Cross-sectional view of CMOS micro-hotplate based gas sensor (drawing not to scale) 

          (b) Optical microscope picture of top view of micro-hotplate and SOI membrane 

(a) 
(b) 
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Fig2: Power consumption of an SOI CMOS micro-hotplate with ZnONW coating 

 

of the micro-hotplate and its detailed analysis were reported in an earlier paper [1]. 

3. ZnONW growth on CMOS platform 

Zinc oxide nanowires were grown on the membrane area using a CMOS friendly hydrothermal method. 

The thin (~5 nm) ZnO seed layer was sputtered on the micro-hotplates by using a shadow metal mask. 

This was then followed by dipping the chip in an equimolar (25 mM) aqueous solution of zinc nitrate 

hexahydrate (Zn(NO3)2·6H2O, Sigma–Aldrich) and hexamethylenetetramine (HMTA, Sigma Aldrich) 

and was kept at 90°C for 2 h [2]. The devices were removed from the solution after the ZnONW growth 

and then washed with deionised (DI) water and dried with nitrogen. The scanning electron microscope 

(SEM) picture of ZnONW grown on our micro-hotplate is shown in figure 3. 

4. Hydrogen test result and discussion 

ZnONWs were tested in presence of hydrogen at the Microsensors and Bioelectronics Laboratory 

(MBL), University of Warwick, UK. The gas test chamber is computer controlled and there is facility to 

add dry and humid air along with the test gas to control the concentration. National Semiconductor DAQ 

card was connected to the chamber to capture the sensor data in a computer. The chamber was kept at 

24°C. The sensor devices were heated up by silicon heaters which were under the ZnONW sensing layer. 

The test was carried out at six concentrations of hydrogen starting from 800 ppm to 4800 ppm. The 

response (∆R/R) was found to be ca. 9% (800 ppm) and 20% (4800 ppm) in hydrogen at 20% r.h., as 

shown in figure 4. The measurements were carried out at three different temperatures. It was found that 

the ZnONW response increases with increasing temperature, as shown in figure 5. The maximum 

temperature used here was 320°C to avoid any electro-migration in the aluminium under the Au/Ni 

                                                   
Fig3: SEM image of ZnONW grown on gold plated interdigitated aluminium electrode (inset shows magnified view) 
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Fig4: Change in voltage across ZnONWs at different  Fig5: Response (∆R/R) of ZnONWs to 4800 ppm of 

hydrogen concentrations at 320°C and r.h. of 20%. hydrogen at three different temperatures. 
 

electrodes. It is well known that metal oxide gas sensitivity depends on the interaction between the gas 

species and adsorbed oxygen ions (O
−
 and O

2−
) on the surface of the material. An electron depletion 

region is formed (which leads to the increase in the resistance of the metal oxides) when ZnONWs placed 

at the air atmosphere. This is due to the extraction of conduction band electrons by the adsorbed oxygen 

ions. When the ZnONWs are exposed to the hydrogen gas, it will react with adsorbed oxygen ions and 

produce water molecules (as shown below), while the released electrons will contribute to the current 

increase (hence resistance decrease) through the nanowire [3], in other words, a decrease in the width of 

the depletion region thus enhancing carrier (n-type) mobility in ZnO. 

H2 + ½ O
2−

 (ad)→ H2O + e
−
  H2 + O

−
 (ad) → H2O + e

−
 

5. Conclusion 

This paper describes a novel hydrothermal method to grow ZnONW on SOI CMOS membranes. The 

method is CMOS friendly because it does not require harsh chemicals and high process temperatures (e.g. 

compared to a CVD approach). The basic gas sensor device was an SOI micro-hotplate structure that 

contains a p+ silicon micro-heater and gold plated interdigitated electrodes. The micro-hotplates have 

very low power consumption (< 20 mW, below 250°C) and were fabricated at the wafer level in a 

commercial foundry. The devices showed a good response down to a few hundred ppm of hydrogen in 

moist air. We believe this ZnONW growth on fully processed CMOS substrate could potentially be used 

to manufacture a low-cost hydrogen microsensor. 
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