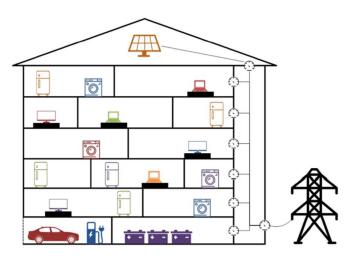


Transactive Energy Pilot

LoT-NET Workshop

Chris Conlan – December 2019


Introduction

• About me

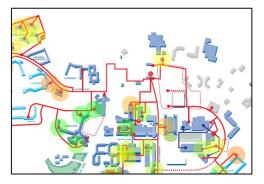
- PhD Student at Warwick Institute for Science of Cities (WISC)
- Data scientist
- What is Transactive Energy?
 - Automated P2P energy trading platform
 - Inter-vectoral
 - Technology based on IoT, AI and Blockchain
 - Part of a cyber-physical systems prevalent in smart cities

More on Transactive Energy

Ref - Mattila, J., Seppälä, T., Naucler, C., Stahl, R., Tikkanen, M., Bådenlid, A. and Seppälä, J., 2016. Industrial blockchain platforms: An exercise in use case development in the energy industry (No. 43). The Research Institute of the Finnish Economy.

- Device level control
- Operated by multi-agent system

WARWICK

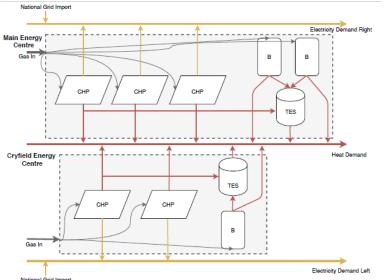

THE UNIVERSITY OF WARWICK

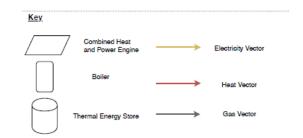
- Benefits
 - Greater integration of renewables
 - Distributed control
 - Resilience
 - Community empowerment

Transactive Energy - Campus

- Collaboration with Estates and Fetch.ai
- Initial scope Energy Centres
- Next more diverse set of assets
- Such as...
 - Leverage heat latency in buildings
 - Storage / EV Charging
 - Renewables

WARWICK


THE UNIVERSITY OF WARWICK


Schematic of microgrid

WARWICK THE UNIVERSITY OF WARWICK

Energy Centre Schematic

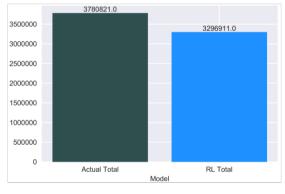
National Grid Import

WARWICK THE UNIVERSITY OF WARWICK

Energy Centres - Existing Control Model

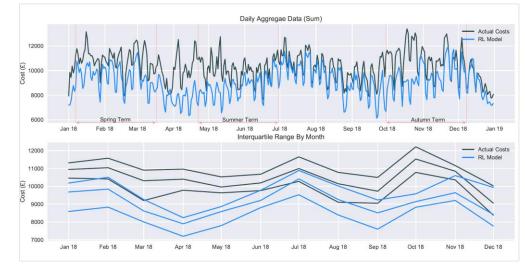
- Rules based Energy Management software
 - Domain knowledge
 - Forecasting key to decision making
- Makes decision at a fine temporal scale, but...
- Does this model optimise cross-vectoral energy management?

CK


THE UNIVERSITY OF WARWICK

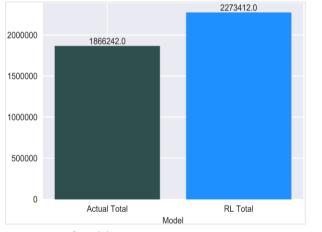
Machine Learning Approach

- Data driven
- Multi-agent system (AI)
- Optimisation problem minimise cost
- Train using 2 years of data from energy centre
- Hourly control actions seeks the optimal mix of asset utilisation to meet energy demand



Results – Total Cost

Total Energy Centre Costs 2018 (£)


Reduce costs by 12.8% in 2018

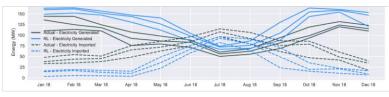
Energy Centres Costs in 2018 (£) over time

Results – Cost of Gas vs Electricity

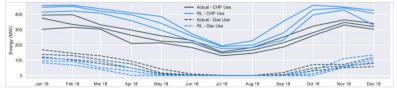
Gas costs increase 21.8%

WARWICK

THE UNIVERSITY OF WARWICK


 Electricity imports decrease 46.5%

Total cost of gas (£) 2018


Total cost of imported electricity (£) 2018

Results – Asset Utilisation

Electricity Generated vs Electricity Imported

CHP Use vs GB Use

Heat dispersed vs Heat Saved

- More intensive and dynamic use of CHPs
- GBs used less extensively
- Better at cross-vectoral optimisation

THE UNIVERSITY OF WARWICK

Actionability

- Working with estates to understand actionability of results
- Findings can work both ways
 - Can help make argument for how to better run energy centres
 - Support investment decisions
- Starting to investigate feasibility of real-world deployment
 - Controls to replicate
 - Establish responsibilities

Next Steps....

- Phase 1 Energy Centre Pilot
 - Parallel run
 - Live deployment
 - Additional data feeds
- Phase 2 Wider TE Pilot
 - Include a more diverse set of assets