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A Deterministic Chaos and Noise: Environment

Environment induces

Dissipation and Fluctuations

H=H,+H,+H,,

H ¢ System Hamiltonian ©

H p Bath (Environmental) Hamiltonian . % *oe
.Bath ’ .

H SB Hamiltonian of interaction Environment

Elimination of the environmental
degrees of freedom leads to (external or internal

degrees of freedom)

® Dissipation and
e Fluctuations

Note: Elimination is ,as a rule, a challenge task and
it is often phenomenological



/R Deterministic Chaos and Noise: Environment

Archetypical Example: Environment as a Collection of
Linear Oscillators

H=H,+H,+H

_p . The system is .
Hg = m +Vig:1) a model of a particle in potential % o B

N 2 Bath o
= Z Pn_ My W’ x’ The collection of Envirene

harmonic oscillators * * e °

N
i Linear coupling between system and
=—q) c,x, +
. qz 1 Z T 2m a) bath
Elimination leads to Dissipation and Fluctuations

have the same origin

Ny . dV
mg +2ymqg+— = &) N
aq Fluctuations
Damping (dissipation) noise



ey W Chaos and Noise: Large Fluctuations
g

The simplification of dynamics: considering dynamics related to Large
Fluctuations

Different manifestations of fluctuations:

Diffusion in a vicinity of attractor Large fluctuations
~ (deviations) from attractors

‘&%W%&'& S




Chaos and Noise: Large Fluctuation Approach

The system described by X = K(X,1) + Q&(1),
L 1 10NS:

angevin equations <§a> _0. <§a (l‘)fﬁ (S)> —Q8(—s)
Transition probability via fluctuations paths

P(X 1, 1X,,1) = ) pIx(®);1=pIx(0),,]

The selection of the most probable (optimal) path




Deterministic chaos and noise: optimal path approach

deterministic pattern of fluctuations

@fm e
<§0’>:0’ <§a(t)§ﬁ(s)>:DQ5(t—s)

The probability of fluctuational path  p[X(#) ;] is related to
the probability p[é(t)j] of random force to have a realization ?;(t)j

For Gaussian noise: PLE() ;1= Cexp{—; J-ﬁ(t)jzdt] = Cexp(—%SJ

Since the exponential form, the most probable path has a minimal S=S, ;.

Changing to dynamical variables:

- K(x.
Action S =S[g()] x=RE&D+0 . S =[x®]

E(r) = x—K(x,7)
S[x<r>0pt]j

In thelimit D — O, IO(Xf;Xi) = IO(X(t)opt): Consl’)(expﬁ_ >

Deterministic

Suin =Sz, ()] = min [ di&—Kx.0)) minimization problem s




A Large fluctuations and Model reduction

The initial model: the Hamiltonian for

the system, the bath and coupling H=H S + H B + H SB
In general case the dimension is infinite.

Langevin model reduction: finite X =K(x,1)+8(7),

dimensional system with noise terms, (&,)=0, <§a(t)§ﬁ(s)> =DQJS(t— )
The dimension is infinite

arge fluctuations reduction leads to a specific object: the optimal path

lution of boundary value problem of the finite dimensional Hamilton system
State X 1

oo = S|, (0] = min [ dr(x—K(x, 1))
S —

S Formally the deterministic minimizatior

problem can be formulated in the
Initial state : Hamiltonian form:

q(ti):Xi’p(t,-):O, [, —> —oo;

Final state :

1
H =5pr +pK(q,7);

a(t,)=x,,p(t,)=0, t, >co. (’1=$, p=-21



Optimal path approach
deterministic pattern of fluctuations

Time

The prehistory
probability of
transition
between states
of bistable
oscillator
(electronic
experiment)

g(t)/\/\, )

mal paths are essentially deterministic trajectories

=
.=
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A

Lorenz system c=10, b=38/3,

4 :O-(% _%)

y qsé

4, =74, —49, —4,4; : Y
4; = 4,9, — bq; +42D c(t) 30y _______ /

Consider noise-induced
escape from the chaotic
attractor to the stable
point in the limit D —

40—

10—

The task is to
determine the most
probable (optimal)
escape path

Chaos and Noise: Quasi-hyperbolic Attractor

r=24.08

om—— !

“Saddle cycles

11



A Chaos: Quasi-hyperbolic Attractor

Lorenz Attractor

r =13.92 4 Homoclinic B bl
loop -> Horseshoe ? | | % 1

30-f
20T N \
10~
=D 3
The saddle point and its |
separatrices belong to 0~
chaotic attractor and
form “"bad set" or non- 20 atrices e
hyperbolic part of the 9 : : 0 06
attractor q,

Loops between separatrices [, and I, and stable

manifolds of cycles L, and L, generate
The Lorenz attractor - quasi-hyperbolic attractor
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The loop between sebar‘atrices
I, and I', and stable manifolds

of cycles L, and L, persists by
varying parameters
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A Large Fluctuations: the prehistory probability

The prehistory approach
x =K(x,1)+&(?),
(£,)=0,(&,(0&,(5)) = DQS(t - 5)

1. Select the regime D —0
i.e. rare large fluctuations

[ <<t

relax activ

2. Record all trajectories
X;(#) arrived to the final
state and build the
prehistory probability
density p,(x)

The maximum of the density
corresponds to the most
probable (optimal) path

3. Simultaneously noise
realizations &(f) are
collected and give us the
optimal fluctuational force 14

Prehistory Probability Density




E‘N““VCEAR"’ST'%A Chaos: Quasi-hyperbolic Attractor

The Poincaré section g;=r - 1

25

20

15

1,

.

Stable manifold of
the saddle point

“+” Separatrix

*Chaotic |
attractor

15} “0”” Saddle cycle i

20 .

L . . . . 9%
-20 -15 -10 -5 0 S 10 15 20
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A Chaos and Noise: Quasi-hyperbolic Attractor

Probability density p(q,) for Poincaré section ¢, =r—1

10‘2_ .................................................................................................................... "'
10° ot
107 . /_/
b , ,
. =/ The difference
1 et N the tail (low
i probable part
- of the density)
o T . .
9.5 9.6 9.7 9.8

q91

Noise does not change
significantly the
eeeee D=0.001 In the presence of noise probability density

— [)=() In the absence of noise

Are noise-induced tail important?
16



A Chaos and Noise: Quasi-hyperbolic Attractor

Escape from quasi-hyperbolic attractor

Escape trajectories

Wq i1s the stable manifold and
I, and I, are separatrices of the
saddle point O

L, and L, are saddle cycles

T, and T, are trajectories which
are tangent to Wy

No,.sve_lhduced fa,./ "’.
10° i ; T
10° :
: ” /
107 . /
The escape process is connected with T~
the non-hyperbolic structure of o2\ S

attractor: stable and unstable
manifolds of the saddle point

The distribution of escape
trajectories (exit distribution)



A Chaos and Noise: Quasi-hyperbolic Attractor

The optimal path and fluctuational force from analysis of fluctuations prehistory

Optimal force

el s e s

0 T e e
g, 17 20 Tan 10 o0 10 (

Three parts:
1) Deterministic part, the force equals to zero; The point A 1s the initial state X;
2) Noise-assisted motion along stable and unstable manifolds of the saddle point

3) Slow diffusion to overcome the deterministic drift of unstable manifold of the
saddle cycle and cross the cycle



A Chaos and Noise: Non-hyperbolic Attractor

Non-autonomous nonlinear oscillator

Ty ol (¢,1) — 2DE&(r) The potential U(q)
dq 1S monostable
2

U(q,t) =%q2 +§q3 +z:/q4 + g hsin Qt

=005 @,=0597 B=y=1

The motion is underdamped

Chaos

h Co-existence region
of two cycles v’ 7
Q=1.005 4| of period 1

10

Co-existence
of two cycles
of period 2

-2

1107}

0.02 0.06 0.1 0.14 0.18



A Chaos and Noise: Non-hyperbolic Attractor

The co-existence of chaotic attractor and the limit cycle

h=0.13 Q=095 1

U G g | Stable cycle ——— — — L _
q(t,)=x,p(t)=0, ol 'Saddle cycle ;
0.6 |
[, — —o0;
Final state: The stable %4
cycle 0.2
q(tf)=xf,p(tf):0, 0
L = 0.2
d
1".
ucl
SC1 |
1 05 0 0.5 ]
_1- q
| 20




A Chaos and Noise: Non-hyperbolic Attractor

Probability density p(g,qg) for Poincaré section Qf =0

— _g.10
0.4 D=0 0.4 D=5-10
q q
-0.275 ; & | , | 0275
&~
_0.95 " " " . _0.95 . . . "
0.6 0.4 02 g 0 0.6 0.4 0.2 g 0

A weak noise significantly changes the probability density

21



A Chaos and Noise: Non-hyperbolic Attractor

The prehistory probability density p, (¢,4,?) D=5-10"*

There is a miximum in
the prehistory
probability density

15

15 s

22



A Chaos and Noise: Non-hyperbolic Attractor

Escape trajectories follow a narrow tube

Q: Do any e o s
sets form the 2~ " ; g
escape path?

9 Saddle cycle

To answer we N

take initial ~ <
conditions along ()~
the path and try to

localize any sets , : PR :




A Chaos and Noise: Non-hyperbolic Attractor

The prehistory probability density p, (g,7)

Saddle cycles
form the
escape path

24



A Chaos and Noise: Non-hyperbolic Attractor

The escape is a sequence of jumps between saddle cycles.
Escape trajectory is a heteroclinic trajectories connected saddle

cycles of Hamilton system.
1
H = Epr +pK(q,?);

. O0H . O0H
—ga P——E,

Initial state: cycle S5
q(r,)=x,,p(z,)=0, 1 — —o;

Final state: cycle UCI

q(tf)zxf’p(tf):()’ Iy —> oo

0_.




|

Summary

For a quasi-hyperbolic attractor, its non-hyperbolic part plays an essential
role in the escape process.

For a non-hyperbolic attractor, saddle cycles embedded in the attractor and
basin of attraction are important. Escape from a non-hyperbolic attractor
occurs 1n a sequence of jumps between saddle cycles.

For both types of chaotic attractor we can select specific sets which are
connected with Large Fluctuations and the most probable paths.

Thus the description of large fluctuations 1s reduced to specification of a
particular trajectory (the optimal path).

26



