Introduction to Molecular Communication

Adam Noel

University of Erlangen-Nürnberg
Institute for Digital Communications

University of British Columbia
Department of Electrical and Computer Engineering

http://ece.ubc.ca/~adamm

Digital Communication Guest Lecture
University of Erlangen-Nürnberg
November 5, 2013
Imagine tiny networks with many thousands of devices
- Simple devices working cooperatively to complete challenging tasks
- Ultra-sensitive to changes in the environment
- Fully distributed and ad hoc
- Self-replicating

Is this a hopeless fantasy or current reality?

Richard Feynman, Caltech, 1959

“There’s Plenty of Room at the Bottom”
These networks already exist in biological systems!

- Single and multi-celled organisms use communication networks
- How to communicate? **Molecules** are widely used!
Part I: Introduction to Nanoscale Communication

1. Nanometer Devices and Networks
 - Nanomachines
 - Nanonetworks

2. Molecular Communication
 - What is Molecular Communication?
 - Design Strategies
Part II: Communicating via Diffusion

3 Mathematics of Diffusion
 - Why Diffusion?
 - Fick’s Second Law

4 Modeling Communication Link
 - System Model
 - Transmitter Design
 - Signal at Receiver
 - Receiver Design
 - External Modification

5 Open Problems in Diffusive Communication
 - Physical Environment
 - Transceiver Design
Part III: Reaction-Diffusion Systems

6 Deterministic vs Stochastic Systems

7 Lattice-Based Systems

8 Particle-Based Systems
Part I

Introduction to Nanoscale Communication
Introduction to Nanoscale Communication

1. Nanometer Devices and Networks
 - Nanomachines
 - Nanonetworks

2. Molecular Communication
 - What is Molecular Communication?
 - Design Strategies
How exactly should we define a nanomachine?

- **“Nano”** - nanometre [nm] - 10^{-9} m
- Milli 10^{-3}, Micro 10^{-6}, Pico 10^{-12}
- **“Machine”** - device performing an independent task
- Tasks could be mechanical, chemical, electrical, etc.

First Definition of a Nanomachine

A nanomachine is a machine whose largest dimension is between 1 nm and 1 µm

Question - Is this an appropriate definition?
What is a Nanomachine?

What objects are on the order of a nanometre in size?

- Biological cells - most between $1 \mu m$ and $100 \mu m$
- Single atoms - under 1 nm in diameter
- “Small” molecules - about 1 nm
- Proteins - $5 - 10 \text{ nm}$
- Viruses - on the order of 100 nm
- Cellular Organelles (subunits) - $25 \text{ nm} - 1 \mu m$

A nice visual resource:

http://learn.genetics.utah.edu/content/begin/cellsSCALE/
Another Nanomachine Definition

What is “bad” about first definition?

- Entire biological machines at nanoscale are truly small
- Cells are outside scope of definition
- Most subunits of cells are nanoscale

Second Definition of a Nanomachine

A nanomachine is a machine with nanoscale functional components

- This definition includes cells
- We will refer to this definition
Cells can be very complex structures

- Food Processing, Mobility, Reproduction, Sensing
- Communication
What Can a Single Nanomachine Do?

Some options for synthetic nanomachine design:

- Modified cells (genetically altered)
- Artificial cells (leave out unnecessary components)
- Downscaled electronic devices

Why consider “bio-hybrid” (e.g. cell-based) designs?

- Already a “mature” technology (evolved over billions of years)
- Biocompatibility for devices in living systems
- Improve understanding of biological systems
Single nanomachines may be complex but limited output

- A Nanonetwork is the interconnection of nanomachines
- Cooperate to perform more complex tasks
- Share different local information
Both single- and multi-celled organisms form networks

Community of Bacteria
Source: US CDC

Eukaryotic Cells in a Tissue
Source: Wikimedia Commons
What Could Synthetic Nanonetworks Do?

Biomedical Applications

- Targeted drug delivery - cooperatively release medication
- Health monitoring - identify presence of toxic substances
- Regenerative medicine - rebuild damaged tissues, organs
- Genetic engineering - Manipulate DNA

DNA Double-Helix
What Could Synthetic Nanonetworks Do?

Environmental Applications

- Environmental monitoring - detection of pollutants or toxins
- Degradation - safe conversion of undesired materials
Manufacturing

- Quality control - identification of product defects
- Bottom-up formation - precise construction of components
- New functionality - integrate nanonetworks into new products
We want communication systems that are:

- **Reliable** - low probability of receiver error
- **Realistic** - achievable with current/future technology
- **Really fast** - transmit as much data as possible

Aim of Communication Analysis

Robust network design that is not application-specific but does consider the envisioned capabilities of nanomachines

- Conventional problem still exists - transmission of information
How to Build the Network?

Two main streams of nanonetwork design consider using either:

1. **Electromagnetic Radiation** - a somewhat top-down design approach

2. **Molecular Communication** - use molecules as information carriers

Molecular communication is a more natural choice for biologically-based nanomachines
Molecular Communication

A transmitter emits information molecules that are carried to an intended receiver
Molecular communication presents the following advantages:

- **Feasibility** - regarded as easier to implement than other approaches in the near term,
- **Scale** - appropriate size for nanomachines
- **Bio-compatibility** - integration with living systems possible (though not guaranteed!)
- **Energy Efficiency** - biochemical reactions have high efficiencies
- **Functional Complexity** - billions of years of evolution

Other advantages depend on the particular implementation
Molecular communication presents the following challenges:

- **Stochasticity** - random propagation of molecules, environmental noise
- **Delay** - propagation times very long compared to speed of light
- **Range** - techniques can have very short practical ranges
- **Fragility** - biological components can be environmentally sensitive (temperature, pH, other reagents)
List of “popular” propagation techniques

- Free diffusion
- Gap junctions
- Molecular motors
- Bacterial motors
Free Diffusion

- Natural passive process within cell, amongst cells, or between organisms

Procedure:
1. Transmitter floods environment with molecules (emits)
2. Molecules motion is entirely random
3. Some molecules reach the receiver
4. Molecules may enter receiver or bind to surface

We will return to diffusion later
Free Diffusion

- Natural passive process within cell, amongst cells, or between organisms
- Procedure:
 1. Transmitter floods environment with molecules (emits)
 2. Molecules motion is entirely random
 3. Some molecules reach the receiver
 4. Molecules may enter receiver or bind to surface

We will return to diffusion later
Natural passive process within cell, amongst cells, or between organisms

Procedure:
1. Transmitter floods environment with molecules (emits)
2. Molecules motion is entirely random
3. Some molecules reach the receiver
4. Molecules may enter receiver or bind to surface

We will return to diffusion later
Free Diffusion

- Natural passive process within cell, amongst cells, or between organisms
- Procedure:
 1. Transmitter floods environment with molecules (emits)
 2. Molecules motion is entirely random
 3. Some molecules reach the receiver
 4. Molecules may enter receiver or bind to surface

We will return to diffusion later
Diffusion via Gap Junctions

- **Gap junctions** - channels between adjacent cells
- **Procedure:**
 1. Transmitter creates signalling molecules
 2. Some molecules diffuse to adjacent cell
 3. Positive feedback reaction amplifies signal
 4. Signal can propagate far distances

- Intermediary cells act as relays
Diffusion via Gap Junctions

- Gap junctions - channels between adjacent cells
- Procedure:
 1. Transmitter creates signalling molecules
 2. Some molecules diffuse to adjacent cell
 3. Positive feedback reaction amplifies signal
 4. Signal can propagate far distances
- Intermediary cells act as relays
Diffusion via Gap Junctions

- Gap junctions - channels between adjacent cells
- Procedure:
 1. Transmitter creates signalling molecules
 2. Some molecules diffuse to adjacent cell
 3. Positive feedback reaction amplifies signal
 4. Signal can propagate far distances
- Intermediary cells act as relays
4. Molecular Communication

Diffusion via Gap Junctions

- Gap junctions - channels between adjacent cells
- Procedure:
 1. Transmitter creates signalling molecules
 2. Some molecules diffuse to adjacent cell
 3. Positive feedback reaction amplifies signal
 4. Signal can propagate far distances
- Intermediary cells act as relays
Gap junctions - channels between adjacent cells

Procedure:
1. Transmitter creates signalling molecules
2. Some molecules diffuse to adjacent cell
3. Positive feedback reaction amplifies signal
4. Signal can propagate far distances

Intermediary cells act as relays
Molecular Motors

- Commonly used for intracellular transport of larger molecules
- Deploys a generic architecture
- Procedure:
 1. Information molecule placed in generic motor container
 2. Container travels along rail
 3. Container “opened” at receiver
Molecular Motors

- Commonly used for intracellular transport of larger molecules
- Deploys a generic architecture
- Procedure:
 1. Information molecule placed in generic motor container
 2. Container travels along rail
 3. Container “opened” at receiver
Molecular Motors

- Commonly used for intracellular transport of larger molecules
- Deploys a generic architecture

Procedure:
1. Information molecule placed in generic motor container
2. Container travels along rail
3. Container “opened” at receiver
Molecular Motors

- Commonly used for intracellular transport of larger molecules
- Deploys a generic architecture

Procedure:
1. Information molecule placed in generic motor container
2. Container travels along rail
3. Container “opened” at receiver
Bacteria cells have flagella that enable propulsion

Procedure:

1. Transmitter gives DNA information to bacteria
2. Bacteria runs and tumbles towards receiver
3. DNA information passed to receiver upon contact
Bacterial Motors

- Bacteria cells have flagella that enable propulsion
- Procedure:
 1. Transmitter gives DNA information to bacteria
 2. Bacteria runs and tumbles towards receiver
 3. DNA information passed to receiver upon contact
Bacterial Motors

- Bacteria cells have flagella that enable propulsion

Procedure:

1. Transmitter gives DNA information to bacteria
2. Bacteria runs and tumbles towards receiver
3. DNA information passed to receiver upon contact
Part II

Communicating via Diffusion
Communicating via Diffusion

3 Mathematics of Diffusion
- Why Diffusion?
- Fick’s Second Law

4 Modeling Communication Link
- System Model
- Transmitter Design
- Signal at Receiver
- Receiver Design
- External Modification

5 Open Problems in Diffusive Communication
- Physical Environment
- Transceiver Design
Features of Diffusion

- **Random walk** caused by thermal vibrations and collisions
- **Very fast** over short distances \((1 \mu m \text{ in } 1 s)\)
- Bacterial cells rely on diffusion internally
- Rich literature describing diffusive processes (heat transfer, fluid dynamics)
- Most popular method to consider in communications research (thus far)
Consider being a “small” molecule immersed in liquid water

- One water molecule is 0.275 nm in diameter
- At 25 °C, water molecules move at over 500 m/s = 5 × 10^5 nm/µs
- There are about 33 water molecules in a 1 nm cube of pure water

A few consequences:

1. There are a LOT of collisions
2. The “small” molecule we added will be moved randomly
3. Gravity is essentially irrelevant at this scale
A mathematical description is possible

- Adolf Fick - observed pollen diffusing in a glass
- Fick derived deterministic laws in 1855
- Based on the diffusion coefficient $D \, (m^2/s)$
Foundation of Diffusion

Fick’s Second Law

\frac{\partial C}{\partial t} = D \nabla^2 C

Einstein Relation (Spherical particles)

D = \frac{k_B T}{6\pi \eta R}

- C - concentration of diffusing molecule (molecule \cdot m$^{-3}$)
- k_B - Boltzmann constant ($k_B = 1.38 \times 10^{-23}$ J/K)
- T - temperature in kelvin
- η - solvent viscosity (water, blood, etc.) in kg \cdot m$^{-1}$s$^{-1}$
- R - radius of diffusing molecule (m)
A few more notes on diffusion coefficients:

- Generally not constant but we usually make this assumption.
- For small biomolecules, value is on order of $10^{-11} \text{ m}^2/\text{s}$.
- Displacement of 1 molecule along one dimension is a normal random variable with variance $2Dt$.
- Individual molecule motion is random but with known distribution.
- Collective motion of many molecules is deterministic.
Fick’s Second Law

\[\frac{\partial C}{\partial t} = D \nabla^2 C \]

- A lot of literature in solving Fick’s Second Law
- Solutions depend on the boundary conditions:
 - Shape of environment (infinite, rod, cylinder, sphere, etc.)
 - Source of diffusing molecules (point, surface, steady vs. impulse, etc.)
- Flow of solvent, variable temperature, etc., affects solutions
- Many environments have no analytical solution or infinite sums
Impulsive Point Source into Infinite Environment

\[C = \frac{N}{(4\pi D t)^{3/2}} \exp \left(\frac{-|\vec{r}|^2}{4Dt} \right) \]

Impulsive Spherical Source into Infinite Environment

\[C(r, t) = \frac{3}{8\pi r_{\text{obs}}^2} \left[\text{erf} \left(\frac{r_{\text{obs}} - r}{2\sqrt{Dt}} \right) + \text{erf} \left(\frac{r_{\text{obs}} + r}{2\sqrt{Dt}} \right) \right] \]

\[+ \frac{3}{4\pi r_{\text{obs}}^2} \sqrt{\frac{D t}{\pi}} \left[\exp \left(-\frac{(r_{\text{obs}} + r)^2}{4Dt} \right) \right. \]

\[- \exp \left(-\frac{(r_{\text{obs}} - r)^2}{4Dt} \right) \]
Now we will

- Assume transmitter (TX) has binary message for receiver (RX)
- Highlight analysis in a diffusive communication link
- Discuss practical challenges
How Are Molecules Released?

- Cells build large containers called **vesicles**
- Biological processes can bring information molecules into vesicles
- When triggered, vesicles can be fused to cell surface
- Fusion releases contents
- Alternatively - immediate release of information molecules as they are created
How to Modulate?

Modulation dimensions include:

- Type of molecule (\(A\) vs \(B\) molecules)
- Number of molecules (i.e., pulse amplitude modulation)
- Time of release
- Pulse-shaping
Factors Influencing # of Molecules at Receiver

- TX modulation scheme
- Environmental shape
- Diffusion coefficient, presence of flow
- Whether information molecules can be added or removed from environment
Let’s consider the simplest modulation in simplest environment

- TX emits impulse of N molecules
- Unbounded 3-dimensional environment
- Constant diffusion and no constant flow
- No change in number of molecules (i.e., no reactions)

Impulsive Point Source into Infinite Environment

$$C = \frac{N}{(4\pi Dt)^{3/2}} \exp \left(\frac{-|\vec{r}|^2}{4Dt} \right)$$

$|\vec{r}|$ - distance from TX
Track expected # of molecules at RX when TX emits

- Large # of molecules emitted; only some reach RX
- Increase in propagation time with square of distance
- Long “tail” - long time to diffuse away
- Intersymbol interference (ISI) bottlenecks communication performance
Basic Receiver Signal

Track expected # of molecules at RX when TX emits

- Large # of molecules emitted; only some reach RX
- Increase in propagation time with square of distance
- Long “tail” - long time to diffuse away
- Intersymbol interference (ISI) bottlenecks communication performance
Considerations in RX design:

- Is RX synchronized with TX?
 - Synchronization could be achieved via external signal
- How does the RX “see” the signal?
 - Molecules absorbed by a biochemical process?
 - Molecules briefly held, facilitating some other reaction?
 - Practically, some reaction must take place
- What kind of processing is possible?
How to Design the Receiver?

- Local reactions - very difficult to analyze in multiple dimensions
- Assume ideal passive RX
- RX can “count” the # of molecules that go by
- Counting over time gives discrete samples
Receiver Analysis

What to do with the samples?

- Detection scheme needed
- Use maximum likelihood for lower bound on error probability
- Tradeoff in complexity vs. practicality
Consider following scheme

- **TX sequence** $\mathbf{W} = \{W[1], W[2], \ldots W[B]\}$
- **ON/OFF keying** - N_{AEM} molecules for binary 1
- **Constant bit interval** T_{int}
- **RX makes** M **samples in a bit interval**
- mth sample in jth interval is $s_{j,m}$ at time $t(j,m)$
- $s_{j,m}$ are samples of received signal $N_{Aobs}(t)$
- **RX decides sequence** $\hat{W}[j]$
Distribution of Received Signal

- $N_{A obs}(t)$ has time-varying mean $\overline{N_{A obs}}(t)$
- $\overline{N_{A obs}}(t)$ can be calculated as function of all prior intervals (additive)
- Samples $s_{j,m}$ are Poisson distributed
- PDF is
 \[
 \Pr(N_{A obs}(t) = \xi) = \frac{\overline{N_{A obs}}(t)^\xi \exp(-\overline{N_{A obs}}(t))}{\xi!}
 \]
- CDF is
 \[
 \Pr(N_{A obs}(t) < \xi) = \exp(-\overline{N_{A obs}}(t)) \sum_{i=0}^{\xi-1} \frac{\overline{N_{A obs}}(t)^i}{i!}
 \]
Maximum Likelihood Detection

- From properties of Poisson random variables we can evaluate

\[
Pr(N_{Aobs}) = \prod_{j=1}^{B} \prod_{m=1}^{M} Pr(N_{Aobs}(t(j,m)) = s_{j,m})
\]

where \(N_{Aobs} \) is the complete set of observations, given sequence \(W \)

- ML detector - evaluate \(Pr(N_{Aobs}) \) for every possible \(W \)
- Complexity reduced with Viterbi Algorithm, but still large memory and computation requirements
- Importantly, we obtain a bound on the probability of error
Weighted sum detector is likely more practical

- \(w_m \) - the weight of the \(m \)th sample
- \(\xi \) - decision threshold

Decision rule is then

\[
\hat{W}[j] = \begin{cases}
1 & \text{if } \sum_{m=1}^{M} w_m N_{A_{obs}}(t(j,m)) \geq \xi, \\
0 & \text{otherwise}
\end{cases}
\]

- Weights scaled to \(N_{A_{obs}}(t) \) gives matched filter
- Equal weights are simpler but give poorer performance
Detector Performance

Source: Noel et al., IEEE Trans. on Nanobiosci., submitted Jul. 2013
Other Environmental Influences

Additive Noise Sources
- We can add “noise” sources that generate additional information molecules.
- Added noise could be interference from other communication links or just other biochemical processes that create the same molecule.
- Straightforward to include impact of noise in current model.

Molecule Degradation
- What if environment contains enzymes (molecule destroyers)?
- Enzymes could reduce impact of ISI and make RX design easier.
Enzymes in Biology

Enzymes in the neuromuscular junction between the terminal axon (T) and muscle fiber (M) reduce ISI

Source: Wikimedia Commons

- Break down information molecules without being consumed (i.e., enzymes are catalysts)
- Improve error probability or increase transmission rate
- No added complexity at the TX or RX
Impact of Enzymes

Consider basic RX (one sample per interval compared to ξ)

- Enzymes enable faster data or less error
Existing flow models consider flow in one direction

Presence of obstacles such as the TX and RX themselves can distort how molecules can diffuse
7. Open Problems

Physical Environment

Flow in Restricted Environments

- Very narrow environments alter diffusion
- In narrow blood vessels, flow model changes significantly
- Impact of laminar flow is unstudied but realistic
Other Open Environmental Problems

- Mobility of TX and RX
- Relaying to improve transmission distance
- Multiuser interference
- Recreating environments experimentally
Open Transceiver Problems

- Learning environment (e.g. distance from TX to RX)
- Impact of complex biochemical mechanisms at RX
- Simple but adaptive RX design
- Actual formation and control of transceivers
Part III

Simulating Reaction-Diffusion Systems
Reaction-Diffusion Systems

6 Deterministic vs Stochastic Systems

7 Lattice-Based Systems

8 Particle-Based Systems
These are deterministic equations
We could numerically solve deterministically
Deterministic diffusion and reactions
There are a few problems with deterministic simulations:

- In practice we have discrete numbers of particles
- Deterministic solutions only valid as \(\# \) of molecules is very large
- Deterministic solutions have no variance, i.e., no probability of error
- Both diffusion AND reaction are inherently stochastic
Stochastic Diffusion
Displacement of 1 molecule along one dimension is a normal random variable with variance $2Dt$

Stochastic Reaction
Reaction coefficient k relates to probability of a reaction occurring
Gillespie Algorithm

- Models every individual reaction
- Every execution is a feasible “trajectory”
- Stochastically exact - high accuracy
- Long computation time needed
- Concentrations of reactants must be uniform (no diffusion modeled)
Accelerate simulation time by leaping

- Assume reactant concentrations constant for τ
- Simultaneously execute whatever reactions occur within τ
- Tradeoff accuracy with speed with selection of τ
- Still assumes uniform concentrations (no diffusion)
Implement diffusion as a reaction

- Divide environment into “bins”
- Discrete in space
- Diffusion reaction is movement from one bin to an adjacent bin
- Treat diffusion the same as a reaction
- Need uniform concentration in each bin
With diffusion alone, lattice-based systems are sufficient for molecular communication.

In our model, we cannot satisfy uniform concentration in practical bin sizes.

Must model exact coordinates of every molecule.

Particle-based simulation framework required.

Discrete in time, continuous in space.
1. Move all molecules based on generation of normal random variables

2. Check whether reactions occur
 - Unimolecular reactions - reaction occurs with probability based on k
 - Bimolecular reactions - If molecules are close enough, then react

3. Advance system time by constant time step
Part IV

Postlude
Postlude

Conclusions

Further Reading
Exciting applications motivate study in the design of synthetic nanonetworks
Nature has provided mechanisms to facilitate communication between small, independent devices
Molecular communication has many interesting problems for communication engineers

Biology and Diffusion

Introduction to Molecular Communication

Adam Noel

University of Erlangen-Nürnberg
Institute for Digital Communications

University of British Columbia
Department of Electrical and Computer Engineering

http://ece.ubc.ca/~adammn

Digital Communication Guest Lecture
University of Erlangen-Nürnberg
November 5, 2013