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Abstract— Engineering cellular memory is a key area of
research in which Synthetic Biology has already begun to make
significant impacts. Recent work elucidating transcriptional
memory devices has paved the way for the creation of bi-
stable genetic switches based on DNA recombination. Attempts
to experimentally design and build synthetic systems using
recombinases have thus far been hindered by a lack of validated
computational models that capture the mechanistic basis of
DNA recombination. The predictive capabilities of such models
could be exploited by Synthetic Biologists to reduce the number
of iterative cycles required to align experimental results with
design performance requirements. Here, we develop and vali-
date the first detailed mechanistic model of DNA recombination,
with a focus on how efficiently recombination can occur, and the
model features required to replicate and predict experimental
data.

I. INTRODUCTION

Synthetic Biology is a highly interdisciplinary field with
the aim of establishing engineering protocols for the con-
struction of synthetic biological circuits. Natural systems of
genetic parts such as promoters and repressors can be rear-
ranged in order to produce desired transcriptional responses
to transient stimuli. One of the first synthetic biological de-
vices to be built in this way was the genetic toggle switch in
E. coli [1]. The toggle switch exhibits bistability, outputting
two distinct transcriptional states, ‘on’ and ‘off’, presenting
immense potential in biocomputing [3]. Recent experimental
developments have seen a movement towards the use of
site-specific recombinases (SSRs) to effectively manipulate
genetic material. SSRs mediate distinct recombination events
that give rise to two stable DNA states. Hence, DNA re-
combination not only has huge potential in biological data
storage [2], but also in medicine since the efficacy of many
diseases is dependent upon the inheritance of cellular states.
Engineering mammalian cellular memory in ways that permit
a programmed response to harmful stimuli has numerous
possible medical applications, such as T cell therapy for
cancer patients [4]. The standardisation of both bacterial
DNA recombination and the conditions required to induce
switching events that are both highly efficient and stable
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over significant time frames will be the first steps towards
realising the human benefit of this research.

SSRs can enable precise DNA manipulation both in vitro
and in vivo [8]. These enzymes, known as integrase and
excisionase, catalyse two recombination events termed inte-
gration and excision. Integrase alone is sufficient to mediate
the integration reaction between an attachment site encoded
within the host chromosome, attB, and an attachment site on
the phage chromosome, attP. The phage genome is inserted
into the host chromosome and is flanked by the newly
formed attachment sites attL and attR. The excision reaction
is mediated in the presence of integrase and a recombina-
tion directionality factor (RDF) also known as excisionase,
restoring the independent substrates as well as the original
attB and attP sites (Fig. 1). A pre-integration state consisting
of attB and attP is referred to as the BP state, whereas a
post-integration/pre-excision state containing attL and attR
is known as the LR state. DNA recombination efficiency
in switching between these two states is dependent on the
concentrations of integrase and RDF in the system.

II. A MECHANISTIC MODEL OF DNA
RECOMBINATION

An extensive review of the experimental literature was
carried out to synthesise current knowledge of the mecha-
nistic basis of recombination, see [5], [6], [7] and references

Fig. 1. Schematic diagram of phage integration and excision. The phage
genome attachment site, attP, is integrated into the host chromosome
attachment site, attB. Integration gives rise to attL and attR, each formed of
half of attB and attP. Excision restores attB and attP, removing the integrated
phage genome from the host chromosome.
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therein. Many structural features of the DNA recombination
reaction network have widespread experimental support in
the literature. Integrase forms dimers in solution [9] with
one dimer bound to attB and attP necessary to mediate
the integration reaction [10], which is unidirectional [11].
RDF does not bind directly to DNA attachment sites [12].
One integrase dimer and an additional RDF monomer bound
to both attL and attR is necessary to mediate excision,
restoring attB and attP [13]. However, we were unable to
find consensus regarding three significant biological details:

• The directionality of the excision reaction.
• RDF dimerisation and subsequent tetramerisation in

solution.
• Integrase monomer binding to DNA substrates.
By constructing a variety of models based on the well es-

tablished properties of the reaction network that differed only
according to the inclusion/exclusion of these three features,
we were able to examine which model best matched our
experimental data and hence investigate the most plausible
representation of the true biological structure (Fig. 2). We
found that including unidirectional excision [14], monomeric
RDF that neither dimerises nor tetramerises in solution [15],
and integrase monomer binding [16], resulted in optimal data
fitting and prediction capabilities in our model. These results
were determined via global optimisation of the parameters
for each candidate model against the data (see Results
section). Early results revealed that our models consistently
produced greater recombination efficiency than that observed
in our data. Hence we included a biologically plausible
mechanism for the sequestration of integrase: the formation
of a dysfunctional integrase dimer at a rate kintX (Fig. 2,
top). Integrase is necessary to mediate both integration and
excision, therefore fewer functional integrase dimers present
within the system decreases the efficiency of both reactions.
As a result, overall recombination efficiencies are reduced
and the model is able to replicate the data with greater
accuracy.

Our modelling investigation focuses on DNA recombi-
nation mediated by φC31 serine integrase and its RDF,
gp3, in vitro. The network consists of twenty-two distinct
biological entities and twenty-eight reaction constants. The
rate of change in concentration of each entity is governed
by a corresponding ordinary differential equation (ODE) in
the model. We apply mass action kinetics to the biological
interactions in order to derive the ODEs that comprise
the model. Analysing the efficiency with which the system
switches from BP state to LR state involves determining the
total register of the system in either state. This equates to
summing each of the ODEs that govern the network entities
in the DNA state of interest (see Fig. 5 for the full list
of ODEs). Model simulations are therefore the numerical
solutions to the following equations:

d[DLRtot ]

dt
= kR[DBPI4]− kR[DLRI4R2]. (1)

d[DBPtot ]

dt
=−kR[DBPI4]+ kR[DLRI4R2], (2)

where DLRtot , DBPtot represent the total concentration of
DNA in LR state and BP state respectively, DBPI4 represents
the concentration of the protein:DNA complex consisting of
four integrase monomers bound to DNA in the BP state,
DLRI4R2 represents the concentration of the protein:DNA
complex consisting of four integrase monomers and two
excisionase monomers bound to DNA in the LR state and
kR represents the rate of recombination.

Experiments performed in vitro allow the initial concen-
trations of the recombinases and substrates to be quantified
exactly and therefore provide the initial conditions with
which to solve the system of ODEs. Hence, we do not require
knowledge of integrase and excisionase expression levels, as
was necessary for the simple model of in vivo recombination
dynamics developed in [2].

III. RESULTS - EXPERIMENTAL VALIDATION

We compared the ability of our model to replicate and
predict in vitro experimental data with a simple mathemat-
ical model of DNA recombination previously developed in
Bonnet et al. [2]. Using a subset of our steady state data for
a variety of different initial concentrations of integrase and
gp3, the parameters of both models were optimised using a
Genetic Algorithm (GA) to minimise the difference between
simulations and data values. The GA converges to the global
minimum within the allocated parameter space by evolving
an initial population of randomly generated solutions over a
large number of generations. The predictive power of both
models was then assessed by evaluating their ability to match
the remaining steady state data. The subset of data used to
optimise the models accounts for one third of the full data
set, allowing the remaining two thirds to provide data for
validation. The data employed as the optimisation subset
were selected to capture the overall dynamic behaviour
of the system effectively but were sufficiently sparse to
allow us to check the predictive capability of the models.
Further optimisation of the model parameters was performed
against a distinct set of time course data. Recombination
efficiency was recorded at ten time points over a three-hour
period for integration and excision reactions of varying initial
recombinase concentrations. Since the model of [2] was orig-
inally developed for in vivo molecular interactions, we made
appropriate adaptations for simulating our in vitro system
dynamics. That is, we removed the parameters governing
recombinase expression levels, as the quantities of recom-
binases in the system is predetermined in vitro i.e. they are
not expressed within the system itself. Also, the sequestration
mechanism, shown to improve performance of our models,
was added in order to allow direct comparisons between the
models. As shown in Fig. 3A, the simple model is unable to
provide a reasonable replication of the experimental steady
state data subset and has poor predictive capability. The
more detailed model, however, exhibits strong predictive
power, accurately reproducing the experimental steady state
recombination efficiencies across all initial concentrations of
integrase and gp3 (Fig. 3B). Similar results were seen for the
time course data (Fig. 4). The parameter space within which
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Fig. 2. The DNA recombination reaction network used to construct the model. The network is based on the mechanisms underlying DNA recombination
that have been verified in the current experimental literature. We model the dynamics of φC31 integrase and its RDF, gp3. Reactions and their rate constants
are depicted by arrows and their corresponding numbered k. The rate of recombination is kR.

both models are optimised is large, since evidence regarding
the numerical values of many reaction rate constants is
currently lacking in the literature. Future work will focus
on further investigation of model parameters to ensure their
biological plausibility and interpret their implications.

IV. CONCLUSIONS

We have developed the first detailed mechanistic model
of in vitro DNA recombination. The predictive power of the
model was validated against a large set of experimental data
of recombination efficiencies for different initial concentra-
tions of integrase and gp3. The proposed model sheds light
on a number of mechanistic features of DNA recombination
for which there is currently no consensus in the experimental
literature, and will be a valuable design tool for Synthetic
Biologists working on the construction of recombinase-based
genetic circuitry, potentially producing significant reductions
in development times. Future work will extend our modelling
investigation to the in vivo system in order to examine model
performance under cellular biological conditions.

V. MATERIALS AND METHODS

Proteins (φC31 integrase and gp3) were purified as de-
scribed in [16], [17], [18]. Integrase and gp3 were diluted
in integrase dilution buffer [25 mM Tris·HCl (pH 7.5), 1
mM DTT, 1 M NaCl, and 50% (vol/vol) glycerol] and
kept at −20◦C. Substrate plasmids containing inverted repeat
recombination sites (pZJ56off with attB and attP; pZJ56on

with attR and attL) used for in vitro assay were prepared from
E. coli DH5, using a plasmid miniprep kit (Qiagen). DNA
concentrations were determined by measuring the absorbance
at 260 nm.

In a typical reaction, premixed integrase and gp3 with
10× their final concentrations were added to a solution of
substrate plasmid (∼10 nM) in a reaction buffer [50 mM
Tris·HCl (pH 7.5), 0.1mM EDTA, 5mM spermidine, and 0.1
mg/ml BSA]. Reactions were carried out at 30◦C, terminated
at various time points, by heating the samples to 80◦C for 10
min. Samples were digested with restriction enzymes, then,
treated with 5 µl of loading buffer [25mM Tris·HCl (pH
8.2), 20% (wt/vol) Ficoll, 0.5% sodium dodecyl sulphate, 5
mg/ml protease K, 0.25 mg/ml bromophenol blue] at 37◦C
for 30 min prior to loading onto 1.2% (wt/vol) agarose
gels. Gels were stained with ethidium bromide, destained in
electroporation buffer, and photographed using Bio-Rad UV
Transilluminator. Recombinant and non-recombinant DNA
bands were quantitated using the volume analysis tool of
Quantity One software.

REFERENCES

[1] T. Gardner, C. Cantor and J. Collins. Nature. 2000 Jan
20;403(6767):339-42.

[2] J. Bonnet, P. Subsoontorn and D. Endy. Proc Natl Acad Sci USA.
2012 Jun 5;109(23):8884-9. doi: 10.1073/pnas.1202344109.

[3] A. Firedland, T. Lu, X. Wang, D. Shi, G. Church and J.
Collins. Science. 2009 May 29;324(5931):1199-202. doi: 10.1126/sci-
ence.1172005.

947



Fig. 3. A: Data fitting / prediction results for the model of [2]. B: Data
fitting / prediction results for our model. In both A and B the top row
of bar graphs represents the integration (BP-LR) reaction and the bottom
row of bar graphs represents the excision (LR-BP) reaction. The wider bars
represent model simulations and the thinner bars represent data.

Fig. 4. Typical data fitting results for the model of [2] (top row) and our
model (bottom row) against time course data. Model simulations are plotted
against two integration reaction time course data sets, one initiated with 800
nanomolar integrase and the other with 400 nanomolar integrase. The cyan
line represents data and the blue line represents the model simulations.

[4] D. Burrill and P. Silver. Cell. 2010 Jan 8;140(1):13-8. doi:
10.1016/j.cell.2009.12.034.

[5] P. Ghosh, L. Wasil and G. Hatfull. PLoS Biol. 2006 Jun;4(6):e186.
[6] P. Ghosh, N. Pannunzio and G. Hatfull. J Mol Biol. 2005 Jun

3;349(2):331-48. Epub 2005 Apr 7.
[7] P. Ghosh, L. Bibb and G. Hatfull. Proc Natl Acad Sci U S A. 2008

Mar 4;105(9):3238-43. doi: 10.1073/pnas.0711649105.
[8] N. Grindley, K. Whiteson and P. Rice. Annu Rev Biochem.

2006;75:567-605.
[9] P. Ghosh, N. Pannunzio and G. Hatfull. J Mol Biol. 2005 Jun

3;349(2):331-48. Epub 2005 Apr 7.
[10] T. Miura, Y. Hosaka, Y. Yan-Zhuo, T. Nishizawa, M. Asayama, H.

Takahashi and M. Shirai. J Gen Appl Microbiol. 2011;57(1):45-57.
[11] P. Fogg, S. Colloms, S. Rosser, M. Stark and M. Smith. J Mol Biol.

2014 Jul 29;426(15):2703-16. doi: 10.1016/j.jmb.2014.05.014. Epub
2014 May 22.
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