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Abstract— A fundamental aim of synthetic biology is to
achieve the capability to design and implement robust em-
bedded biomolecular feedback control circuits. An approach
to realize this objective is to use abstract chemical reaction
networks (CRNs) as a programming language for the design of
complex circuits and networks. Here, we employ this approach
to facilitate the implementation of a class of nonlinear feedback
controllers based on sliding mode control theory. We show how
a set of two-step irreversible reactions with ultrasensitive re-
sponse dynamics can provide a biomolecular implementation of
a nonlinear quasi sliding mode (QSM) controller. We implement
our controller in closed-loop with a prototype of a biological
pathway and demonstrate that the nonlinear QSM controller
outperforms a traditional linear controller by facilitating faster
tracking response dynamics without introducing overshoots in
the transient response.

I. INTRODUCTION

Almost all proposed biomedical applications of synthetic
biology will require the ability to precisely and robustly
control the behaviour of synthetic circuits or devices at a
biomolecular level, [1], [2], [3]. A fundamental aim of syn-
thetic biology is thus to achieve the capability to design and
implement robust embedded biomolecular feedback control
circuits. An appropriate modelling and design framework
for tackling this problem is provided by chemical reaction
networks (CRNs), which represent a convenient and concise
way to model chemical and biological processes and provide
an effective tool for the analysis of their behaviour, [4].
Previous work on the implementation of feedback controllers
within this framework has focussed on the design of linear
time-invariant systems only, e.g. the proportional+integrator
(PI) controllers described in [5], [6], [7]. This approach fails
to exploit the inherently nonlinear dynamics of biomolecular
circuits, and also requires the use of additional circuitry to
overcome the wind-up effects associated with the integrator
action. Here, we extend this approach to allow the implemen-
tation of a well-known type of nonlinear controller, based
on sliding mode control theory, whose strong performance
and robustness characteristics have been widely recognised
in more traditional control engineering application domains
[8], [9], [10]. We show how a set of two-step irreversible
reactions with ultrasensitive response dynamics can provide
a biomolecular implementation of a nonlinear quasi sliding
mode controller. We implement this controller on a prototype

1 are with the Warwick Centre for Integrative Synthetic Biology,
University of Warwick, Coventry, CV4 7AL, United Kingdom,
R.Sawlekar@warwick.ac.uk,
V.Kulkarni@warwick.ac.uk, D.Bates@warwick.ac.uk

2 is with the Department of Information Engineering, University of
Padova, Padova 35131, Italy, montefusco@dei.unipd.it

closed loop feedback system that consists of three individual
modules, a subtractor, controller and process, each realized
by mass action kinetics at a molecular level and intercon-
nected using a modular approach. The performance of the
quasi sliding mode (QSM) controller is compared with that
of a linear PI controller, and is shown to provide faster
response dynamics without introducing overshoots in the
transient response.

Fig. 1: The closed loop feedback control system

The paper is organised as follows: in section II we describe
the methodology used to convert the chemical reactions
underlying the desired operation of each module in the con-
trol system to its corresponding mathematical model within
the CRN framework. In section III we show comparative
results on the closed loop performance properties of the
proposed nonlinear QSM controller versus a standard linear
PI controller. Section IV provides some conclusions.

II. METHODOLOGY
Extending the methodology of [11], we compile CRNs of

unimolecular and bimolecular reactions into strand displace-
ment DNA-based chemistry to achieve the desired dynamic
behaviour of the biomolecular system under consideration.
The implementation of our closed loop feedback system in
Fig. 1 consists of three basic modules realized using CRNs.
Chemical concentrations in strand displacement reactions can
be represented as signals, as shown in Fig. 1. In feedback
control theory, signals may take positive or negative values
when evolving over time, whereas chemical concentrations
can only take positive values. To resolve this difficulty, we
follow [5] and represent each signal x as a difference in the
concentrations of two particular chemical species x+ and x−

which are referred to as the positive and negative components
of the signal x, respectively, so that x = x+− x−. Thus,
x+ and x− takes the positive and negative absolute values
of the signal x, respectively. Each module in Fig. 1 can be
represented using CRNs, and the resulting ordinary differen-
tial equations (ODEs) are obtained by applying generalised
mass-action kinetics, as follows in the next section. Note
that in Fig. 1 the subtractor is shown by block rather than
the standard circle used in control theory, as we also consider
its dynamics.
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A. Quasi Sliding Mode Controller

The activation-deactivation process involved in the DNA
strand displacement mechanism is realized by a set of two
step irreversible reactions that implement our QSM con-
troller. Here, the output sequence of the first bimolecular
reaction initiates another strand displacement. For notational
convenience, we denote the chemical species in the CRNs
and their respective concentrations in the system of ODEs
by the same symbols.

I±+E±1
a1−⇀↽−
d1

C±1
ku1−−→ A±+E±1 (1a)

A±+E±2
a2−⇀↽−
d2

C±2
ku2−−→ I±+E±2 (1b)

The forward reaction (1a) gives product (A), from partially
double stranded DNA segment (E1) and invader (I), which
is able to react further and the backward reaction (1b)
deactivates product (A), by means of species (E2). In these
two step reactions, the intermediate product formed, complex
(I : E1), is denoted by C1, and complex (A : E2) is denoted by
C2. In (1), a1, a2 represent the species association rates and
d1, d2, the dissociation rates. Catalytic rates for activation-
deactivation reactions are denoted by ku1 and ku2 respectively.

Applying generalized mass action kinetics to (1) results
in a system of differential equations that implements the
biomolecular QSM controller. The derivation of the ODEs
for these two-step irreversible reactions is summarised as
follows:

Ȧ+ =−a2A+E+
2 + ku1C

+
1 +d2C+

2

Ȧ− =−a2A−E−2 + ku1C
−
1 +d2C−2

Using the relation in [5] for the above equation set, we
arrive at the differential equation for A:

Ȧ = Ȧ+− Ȧ−

= (−a2A+E+
2 + ku1C+

1 +d2C+
2 )

− (−a2A−E−2 + ku1C
−
1 +d2C−2 )

= −a2[(A+E+
2 )− (A−E−2 )]

+ ku1(C
+
1 −C−1 )+d2(C+

2 −C−2 )

Assuming, (A+E+
2 ) = (AE2)

+ and (A−E−2 ) = (AE2)
−

= −a2[(AE2)
+− (AE2)

−]+ ku1C1 +d2C2

⇒ Ȧ = −a2(AE2)+ ku1C1 +d2C2 (2)

Similarly, for Ċ1 we write:

Ċ+
1 = a1I+E+

1 − (d1 + ku1)C
+
1

Ċ−1 = a1I−E−1 − (d1 + ku1)C
−
1

and obtain the differential equation for C1 as:

Ċ1 = Ċ+
1 −Ċ−1

= (a1I+E+
1 − (d1 + ku1)C

+
1 )

− (a1I−E−1 − (d1 + ku1)C
−
1 )

= a1[(I+E+
1 )− (I−E−1 )]− (d1 + ku1)(C

+
1 −C−1 )

Assuming, (I+E+
1 ) = (IE1)

+ and (I−E−1 ) = (IE1)
−

= a1[(IE1)
+− (IE1)

−]− (d1 + ku1)C1

⇒ Ċ1 = a1IE1− (d1 + ku1)C1 (3)

Following the same procedure as above to obtain the signal
dynamics for C2, we write:

Ċ+
2 = a2A+E+

2 − (d2 + ku2)C
+
2

Ċ−2 = a2A−E−2 − (d2 + ku2)C
−
2

and the corresponding differential equation for C2 is:

Ċ2 = Ċ+
2 −Ċ−2

= (a2A+E+
2 − (d2 + ku2)C

+
2 )

− (a2A−E−2 − (d2 + ku2)C
−
2 )

= a2[(A+E+
2 )− (A−E−2 )]− (d2 + ku2)(C

+
2 −C−2 )

= a2[(AE2)
+− (AE2)

−]− (d2 + ku2)C2

⇒ Ċ2 = a2AE2− (d2 + ku2)C2 (4)

For the QSM controller defined by (2), (3) and (4), the total
substrate concentration of involved species in active, inactive,
bound and unbound form is denoted by, S. Here, quantities S
and E2 are constants as their concentration is assumed to be
preserved throughout the reaction process and the constraint
on S determines I such that, I = S−A−C1−C2.

Equations (2), (3) and (4) defining the QSM controller, is
an approximation of an ideal sliding mode controller (SMC),
[8], [9], [10]. To see this, note that if E2 goes to zero, the
controller approximates a simple switching mechanism so its
output, Uc, can be represented by the following formula:

Uc(t) = kSMC · sgn(Ec(t)) (5)

This kind of controller takes only two values, kSMC and
−kSMC (based on the sign of its input signal, the error Ec),
and has a discontinuity on the straight line Ec = 0, whose
equation is called the sliding manifold σ

de f
= Ec = 0 , where

σ is the sliding variable. The control signal Uc, defined
by (5), is therefore designed to force the system to move
toward the sliding manifold σ = 0 (the reaching phase of
SMC) and then maintain this condition (i.e. σ = 0) for all
future time (the sliding phase of SMC). In practice, however,
implementations of perfect sliding mode controllers cause the
system’s closed loop response to exhibit a zigzag motion of
small amplitude and high frequency, due to imperfections
in switching devices and delays [8], [9], [10] (see Fig. 4).
This effect, known as chattering, is typically avoided by
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Fig. 2: Input-output characteristics of an ideal sliding mode
controller (green) and quasi sliding mode controller (red) as
the parameter E2 is tuned.

using continuous/smooth approximations of the discontinu-
ous SMC. Our controller is an example of such a function,
which can be used to approximate the nonlinearity sgn(Ec),
constituting a QSM controller. Since with a QSM controller
there is no ideal sliding mode in the closed-loop system,
the sliding variable cannot be driven exactly to zero in a
finite time, [10]. However, as the response of our controller
is made more ultrasensitive (by decreasing E2), the input-
output characteristics of the QSM controller converge to that
of the ideal SMC, as shown in Fig. 2.

B. Process to be Controlled

The process to be controlled in the closed loop feedback
scheme is a simple first order linear system defined by a set
of catalysis, degradation and annihilation reactions as:

A±
k1−→ A±+Y± (6a)

Y±
k2−→ φ (6b)

Y++Y−
η−→ φ (6c)

The signal dynamics resulting from applying mass action
kinetics to (6) are:

Ẏ = k1A− k2Y (7)

where, k1 and k2 are catalysis and degradation rates,
respectively. Species A concentration is the controller ma-
nipulated output that serves as input to the process and Y is
the actual output of the closed loop feedback system.

C. Subtractor

Feedback control requires the capability to compare a sig-
nal representing the desired value of the process output with
the current output of the process. The difference between
these two signals thus constitutes an error signal, which acts
as an input to the feedback controller. In our framework, the
required subtraction operation for two input signals (i.e. two
chemical species), U and Y, is performed by four irreversible

unimolecular reactions that produce the error signal E1 which
is then input to the controller [5]:

U± ks−→ U±+E±1 (8a)

Y± ks−→ Y±+E∓1 (8b)

E±1
ks−→ φ (8c)

E+
1 +E−1

η−→ φ (8d)

The dynamics of the error signal from applying mass
action kinetics to (8) are:

Ė1 = ks(U−Y −E1) (9)

Here, ks is the catalysis as well as degradation rate and
error signal dynamics are dependent on the concentration of
all the three species involved.

D. Linear PI Controller

We use a linear PI controller, expressed by a set of
seven CRNs, as a baseline to evaluate the closed loop
performance of our QSM controller. The chemical reactions
and corresponding rates and kinetic constants are based on
those given by [5] and references therein [11] and are given
by:

E±1
kI−→ E±1 +Q± (10a)

Q++Q−
η−→ φ (10b)

φ
γδ1−−→ A± (10c)

E±1
γkP−−→ E±1 +A± (10d)

Q±
γ−→ Q±+A± (10e)

A±
γ(1+δ2)−−−−→ φ (10f)

A++A−
η−→ φ (10g)

The PI controller is approximated using species E1, Q and
A. Here, E1 is the input (error signal) and A is the output of
the controller. The signal dynamics of the first order linear
PI controller are:

Q̇ = kIE1 (11a)

Ȧ = γ[(kpE1 +Q+δ1)− (1+δ2)A] (11b)

III. RESULTS

We compared the closed loop dynamic response of the
linear PI controller and the nonlinear QSM controller for
a square wave reference signal U of amplitude 4 nM. The
reaction rates and kinetic constants of the QSM controller
are set to their nominal values as reported in Table I. K1 =
k1+d1

a1
and K2 = k2+d2

a2
are the Michaelis Menten constants.

Initial concentrations of the species A, C1, C2 are set to zero
(A0, C10 , C20 = 0 nM). The nominal values of all the kinetic
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Fig. 3: Large overshoots occur in the closed loop response
of the PI controller (red) when kI is increased to achieve a
faster response.

TABLE I: QSM Controller

Parameters Nominal Values

S total substrate conc. 8 nM
E2 total substrate conc. 0.1 nM
a1 forward association rate 5000 /nM/s
a2 forward dissociation rate 5000 /nM/s
ku1 catalytic reaction rate 17 /s
ku2 catalytic reaction rate 17 /s
K1 Michelis Menten constant 8 nM
K2 Michelis Menten constant 8 nM

constants for PI controller are enlisted in Table II and initial
concentrations of all the species involved in CRNs (10) are
set to zero (E10 , Q0, A0 = 0 nM). For the subtractor, ks is
set to nominal value 0.4×10−6 /s.

As shown in Fig. 3, the PI controller with nominal value of
kI is able to track the reference signal, however the response
time is rather slow (settling time of 25,000 s). If the gain
of the PI controller is increased (by increasing the values
of kI) to obtain a faster response, significant overshoots are
then observed in the closed loop dynamics. Fig. 4 shows the
corresponding closed loop response achieved by the QSM
controller. The response is now dramatically faster (settling
time of 200 s), without the presence of overshoots, and by
decreasing the value of E2, the steady state error can be
made as small as desired. The QSM controller also avoids the
problem of chattering in the closed loop response exhibited
by the ideal SMC (shown in red). Increasing the accuracy of
the solution computed by the ODE solver for the closed loop
system with the ideal SMC reduces the zigzag motion, but
due to the discrete-time nature of the computer simulation
the output response continues to exhibit chattering.

IV. CONCLUSIONS

In this paper we construct DNA strand displacement based
unimolecular [5] and bimolecular [11] CRNs in order to
realize a nonlinear quasi sliding mode feedback controller.
When compared with the performance of a traditional linear
PI controller, our proposed QSM controller yields dramati-
cally faster responses, without producing overshoots in the
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Fig. 4: Effect of tuning E2 as shown in Fig. 2 on the
closed loop response of the QSM controller (black) while
the problem of “chattering” in the closed loop response of
the implemented SMC (red) is also avoided.

TABLE II: PI Controller

Parameters Nominal Values

γ forward reaction rate 0.4 ×10−6 /s
kI forward reaction rate 0.4 ×10−6 /s
kP kinetic constant 1
δ1 kinetic constant 0
δ2 kinetic constant 2

tracking response. The presented approach is highly modular,
fully exploits the inherently nonlinear nature of biomolecular
reaction kinetics, and makes for the first time a direct link
between the biological concept of ultrasensitivity and the
engineering theory of sliding mode control.
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