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There is currently interest in transmitting acoustic signals along granular chains to produce wave-

forms of relevance to biomedical ultrasound applications. The study of such a transduction mecha-

nism is greatly aided by the use of validated theoretical models. In view of this, a finite element

analysis is presented in this paper. The dynamics of a granular chain of six, 1 mm diameter chrome

steel spherical beads, was excited at one end using a sinusoidal displacement signal at 73 kHz, and

terminated by a rigid support. Output from this model was compared with the solution provided by

the equivalent discrete dynamics model, and good agreement obtained. An experimental configura-

tion involving the same chain, but terminated by an annular support made of a liquid photopolymer

resin was also simulated and the velocity of the last sphere obtained through simulation was com-

pared with laser vibrometer measurement, with good agreement. This model was then extended

whereby the granular chain was coupled to an acoustic medium with the properties of water, via a

thin vitreous carbon cylinder. Finite element predictions of the acoustic pressure indicate that, for a

73 kHz excitation frequency, harmonic rich acoustic pulses with harmonic content close to 1 MHz

are predicted. VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4983466]

[MRH] Pages: 4240–4248

I. INTRODUCTION

Granular crystals can be thought of as ordered aggregates

of elastic particles in contact with each other. They are a type

of nonlinear periodic phononic structure.1 Granular crystals

display nonlinear characteristics which result from the non-

linear relationship of the force at the contact and the displace-

ment between neighboring element centers (described by

Hertzian contact law—a consequence of linear mechanics)

and an asymmetric potential which arises between neighbor-

ing elements from the inability of granular crystals to support

tensile loads.1 As a consequence of these nonlinearities, there

is a negligible linear range for interaction forces between

neighboring elements, in the vicinity of zero pre-compression

force applied to the chain.1 This leads to a non-existent linear

sound speed in the uncompressed material, resulting in a phe-

nomenon described as a “sonic vacuum.” Under such circum-

stances, the traditional wave equation does not support a

characteristic speed of sound.2 However, granular crystals are

known to support a wide array of nonlinear phenomena,

including the generation of compact solitary waves.3–8 A

comprehensive review of granular crystals, along with the

description of the abundance of nonlinear phenomena that

these structures support, can be revealed by consulting the

works of Theocharis et al.1 and of Nesterenko.2

In granular chains, defined here as one-dimensional

granular crystals of spherical beads, the generation of soli-

tary waves is supported where dispersive and nonlinear

effects balance out.3,6,9 This phenomenon was first described

by Nesterenko in 1983, where a discrete mechanics model

was used to demonstrate that the propagation of solitary

waves was supported in a granular chain.3 This observation

was later confirmed in 1985 by generating solitary waves in

a chain of spherical beads via the impact of a piston.4 An

experimental study was subsequently carried out, in which

the propagation of high-amplitude compressional waves in a

chain of beads in Hertzian contact was investigated.5 An

extensive range of pulse amplitudes was used, with the chain

submitted or not to a small pre-compressional static force.

Comparison of the shape and velocity the solitary waves as

functions of their maximum amplitude yielded good agree-

ment with results from the discrete mechanics model.

The study of nonlinear phenomena in granular chains

has recently been extended to biomedical applications.9–11

Spadoni and Daraio9 generated high-amplitude focused

acoustic pulses using a one-dimensional array of granular

chains. An investigation was conducted where the amplitude,

size, and location of the focus could be controlled by varying

the static pre-compression of the chains. Yang et al.a)Electronic mail: p.gelat@ucl.ac.uk
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employed granular chains to assess the structural integrity of

orthopedic implants.10 In the study described by Hutchins

et al.,11 displacements on the order of 1 lm were produced

by a resonant 73 kHz ultrasonic source to drive a granular

chain consisting of six 1 mm diameter chrome steel spheres.

The final sphere of the chain was in contact with a fixed sup-

port. Travelling solitary wave impulses were observed, which

were due to both nonlinearity between adjacent spheres and

reflections within the chain. The axial velocity of the final

sphere of the chain was measured using a laser vibrometer.

The acquired waveforms showed a train of impulses possess-

ing both high amplitude and wide bandwidth, and featuring

spectral content up to 200 kHz. This work was subsequently

expanded upon to study the response of granular chains to a

narrow band ultrasonic source, as a function of the static pre-

compression of the chain, and of its properties.12 A transduc-

tion mechanism based on the nonlinear dynamics of granular

chains may in fact possess distinct features that could make it

attractive to both therapeutic high-intensity focused ultra-

sound applications and diagnostic applications.11,12

Discrete mechanics models such as the one proposed

by Lydon et al.,13 have been shown to replicate features

of the experimentally observed dynamics of granular

chains.5,6,11,12,14 Nevertheless, such models are likely to

have limitations when it comes to designing, developing,

and optimizing application-specific transducers. Indeed, in

the case of biomedical ultrasound applications, a granular

chain may include other components, such as a piezoelec-

tric actuator and matching layers. Furthermore, the trans-

ducer will couple into an acoustic medium, such as water or

soft tissue, the loading of which will affect its dynamic

behavior. An investigation into generating acoustic signals

suitable for biomedical applications will involve the study

of how the acoustic medium will couple to the granular

chain and how resulting acoustic signals will propagate.

These complexities suggest that a numerical solution to the

design of such a transducer is likely to provide more flexi-

bility than the widely used discrete mechanics models.

Khatri et al.15 developed a finite element model using

the ABAQUS software to simulate the dynamic behaviour of

nonlinear actuator system based on tunable granular chains,

consisting of rods terminated by a linear elastic rod. Good

agreement with the discrete mechanics solution and with

experimental results was demonstrated. Musson and

Carlson16 carried out a finite element analysis (FEA) of the

nonlinear dynamics of the granular chain investigated in by

Lazaridi and Nesterenko.4 This solution was provided by the

COMSOL MULTIPHYSICS software. It was shown that FEA could

successfully model the generation of solitary waves in a

chain of 20 beads. Furthermore, the FEA results demon-

strated the importance of localized plastic deformations in

the dynamics of granular chains, hence addressing a limita-

tion of discrete mechanics models, where plastic deforma-

tions are neglected, as the beads are assumed to be point

masses.5 A finite element model was also developed to simu-

late the propagation of a solitary wave in a granular chain, in

contact with a cement sample.17 Based on the characteristics

of the observed reflected wave, an assessment of the elastic

properties of the cement is reported. The above studies

generally focus on the simulation of solitary wave propaga-

tion as a result of a single impact onto the first bead of the

granular chain. Based on the results reported by Hutchins

et al.11,12 there is a requirement to extend FEA to higher fre-

quency excitation signals, in order to develop a better under-

standing of how the nonlinear characteristics of granular

chains may be harnessed to develop novel biomedical devi-

ces. While the physics governing the systems under investi-

gation remain the same, the computational challenges are

more substantial owing to the high frequency content of the

signals relative to the dimensions of the granular chain.

Resolving this frequency content is likely to involve increas-

ingly finer meshes and smaller time-steps. In order to address

these issues, a preliminary study was described by G�elat

et al.,18 where FEA was used to study the behavior of a six-

bead granular chain subject to sinusoidal excitation. The

granular chain described by Hutchins et al.11 was subjected

to five cycles of a sinusoidal displacement of 0.3 lm ampli-

tude, via a rigidly vibrating cylindrical piston at a frequency

of 73 kHz. Displacements at the center of each bead were

obtained as a function of time and compared with results

from the discrete mechanics model described by Lydon

et al.,13 as implemented by Hutchins et al.,11 and in absence

of any viscous damping. The FEA results were in good over-

all agreement with the discrete mechanics model and suc-

cessfully resolved multiple collisions between the beads.

Discernible differences between the FEA and the discrete

mechanics solution were attributed in part to the elastic

deformation of the beads, which is not accounted for in the

discrete mechanics model when the beads separate.

In this paper, the preliminary model described by G�elat

et al.17 was further developed to include an annulus-shaped

support made of liquid photopolymer resin, which was con-

tact with the last bead of the granular chain. This is represen-

tative of what has been used experimentally by Hutchins

et al.11 Dissipation mechanisms due to viscoelastic losses

were implemented through the use of viscous dampers con-

nected between the beads. The first sphere of the chain was

excited via a rigidly vibrating cylindrical piston, the axial

displacement of which was obtained from a laser vibrometer

measurement at the tip of the purpose-built piezoelectric

horn ultrasonic transducer described by Hutchins et al.11 The

fundamental frequency of the voltage excitation signal was

73 kHz and this resulted in a peak normal tip displacement

magnitude of 1 lm. The FEA was carried out using a tran-

sient analysis in ANSYS
TM

MECHANICAL version 16.1.18 The

chain was subsequently coupled to a half-space of water via

a thin layer of vitreous carbon and the acoustic pressure

1 mm from the fluid/structure interface resulting from the

harmonic excitation of the granular chain, was computed.

II. METHOD

A. Discrete mechanics formulations

Linear elasticity provides an exact solution to the static

frictionless interaction between two adjacent elastic spheres.

This is known as Hertz’s law,20 which effectively expresses

a nonlinear relationship between the force F0 exerted on the

spheres, and the distance of approach d0 of their centers. For
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homogeneous isotropic spheres of radius a, this is expressed

as follows:6

d0 ¼
2 hF0ð Þ2=3

a1=3
; (1)

where

h ¼ 3 1� t2ð Þ
4E

: (2)

E and t are, respectively, Young’s modulus and Poisson’s

ratio corresponding to sphere material. It should be noted

that this nonlinear relationship results purely from geometri-

cal effects and is not a result of nonlinear stress-strain

relations.

Consider the case of dynamic excitation of a chain of N
identical, perfectly aligned spheres in Hertzian contact. If it

is assumed that the time scale involved in the motion is

much greater than the time needed by a bulk longitudinal

acoustic wave to travel across the diameter of a bead, Eq. (1)

can be considered valid for dynamic excitation.6 The dynam-

ics of the ith bead of the granular chain can then be

expressed as follows:6

€ui ¼
1

2mh

ffiffiffi
a

2

r �
d0 � ui � ui�1ð Þ
� �3=2

� d0 � uiþ1 � uið Þ
� �3=2

�
: (3)

Equation (3) can account for loss of contacts between the

beads by noting that only positive arguments of the 3/2

power-law terms need be considered. When the beads lose

contact, i.e., for tensionless behavior, these terms can be set

to zero for negative values of these arguments. Initial valida-

tion of the FEA was carried out in using the above discrete

mechanics formulation,18 as implemented by Hutchins

et al.11 Validation of the FEA with Eq. (3) will also be pre-

sented in this paper. It is felt that such further validation is

desirable as granular chains are inherently highly nonlinear

systems, and the displacement excitation acting on the first

sphere of the chain is in this case over three times higher in

magnitude than used by G�elat et al.18

B. Finite element analysis

The problem of frictionless (Hertzian) contact between

two solid bodies is commonly expressed as a variational

inequality. This poses a special type of minimization prob-

lem with inequality constraints, which can be efficiently

treated with (a) the penalty method, (b) the augmented

Lagrangian method, or (c) the Lagrange multiplier method.21

An in-depth explanation of these methods is presented by

Yastrebov.21 In this paper, the Lagrange multiplier method

as implemented in ANSYS
TM

MECHANICAL v16.1 FEA package

was used to solve the minimization problem associated with

contacts between adjacent spheres and with the piston and

support. Reasons for this are discussed by G�elat et al.18

In simulations where the granular chain was coupled to

an acoustic medium, the propagation of acoustic waves

inside the fluid was assumed to be governed by the linear,

inviscid acoustic wave equation, so that the fluid could be

defined in terms of its equilibrium density and speed of

sound. Coupling at the fluid/structure interface assumed con-

tinuity of normal velocity. An absorbing boundary was

placed around the acoustic finite element mesh in order to

simulate the Sommerfeld radiating condition and propaga-

tion of acoustic waves into a half-space.

C. Experimental configuration

The experimental displacement normal to the horn trans-

ducer tip was measured using a laser vibrometer. The mea-

surement protocol, which is further described by Hutchins

et al.12 and by Omololu et al.,13 is summarized below.

The experimental arrangement used is shown in Fig. 1.

Six spheres of 1 mm diameter chrome-steel spheres were

placed within a cylindrical holder made of acrylic resin and

manufactured using micro-stereolithography. The spheres

were placed horizontally within the holder so as to just touch

each other, thus minimizing static pre-compression forces.

The first sphere was excited harmonically by a longitudinal

ultrasonic horn, operating at 73 kHz, which was driven by a

high voltage tone-burst signal using an Agilent 33120A

function/Arbitrary waveform generator and a power ampli-

fier. Both the horn and the chains of spheres were clamped

rigidly onto an optical translation stage. A micrometer was

used to position the horn against the first sphere of the granu-

lar chain with as little force as possible. The last sphere of

the chain was held in place using an annular aperture, allow-

ing detection of the particle velocity waveform at the output

via a Polytec laser vibrometry system. The tone-burst dura-

tion and amplitude of the drive voltage signal could both be

adjusted. The axial displacement of the horn transducer tip

as a function of time is displayed in Fig. 2(a). The normal-

ized FTT of the displacement time history is displayed in

Fig. 2(b), demonstrating that the spectral content is essen-

tially concentrated around the fundamental frequency of 73

kHz. It should be noted that this measurement was carried

out in absence of any mechanical loading on the transducer

tip. In practice, the mechanical loading induced by coupling

with the granular chain is likely to result in a modified dis-

placement time history acting on the first bead of the chain,

which could constitute a source of uncertainty when compar-

ing the modeling results with experimental data.

III. NUMERICAL CALCULATIONS

It was assumed that the beads of the granular chain were

perfectly aligned. By virtue of this assumption, the configu-

ration may be considered axisymmetric. The Cartesian y-

axis was assumed to be the axis of symmetry of the chain. In

the purely structural FEA calculations reported in this paper,

a combination of eight node quadrilateral and six node trian-

gular axisymmetric elements were used, with quadratic

shape functions. These elements feature two translational

degrees of freedom per node. All degrees of freedom of the

cylindrical piston exciting the first sphere of the chain were

coupled, so that they assumed the same motion along the

axis of the chain, i.e., the Cartesian y-axis. In the simulations
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involving fluid/structure coupling, linear elements were used

in the acoustic medium, as ANSYS
TM does not allow for qua-

dratic acoustic elements. The acoustic elements possess one

degree of freedom, i.e., acoustic pressure. A 0.25 mm thick

cylindrical layer of vitreous carbon of 2 mm diameter was

used to couple the chain to the region of fluid, which was

meshed using linear four node quadrilateral elements. The

piston translational degrees of freedom along the Cartesian x
axis were restrained. A graded meshing strategy was

employed, with substantial mesh refinements occurring near

the contact surfaces, to ensure a smooth distribution of con-

tact stresses.16–18 A coarser mesh was allowed for at other

locations to ensure that the total amount degrees of freedom

could be kept within a reasonable limit, so that run times on

the computing platform used would be manageable. The

time step in the transient analysis was set to 0.1 ls.

In the experiments carried out by Hutchins et al.11 the

authors report that efforts were made to minimize pre-

compressive forces. As such, the granular chain was not pre-

compressed by a static force in the work described this

paper. The response of the chain to dynamic excitation as a

function of a static pre-compressive force acting along the

axis of the chain has been reported by Hutchins et al.12

A. FEA of granular chain terminated by a rigid support

A chain of six perfectly aligned chrome steel spheres

was excited with five cycles of a 73 kHz, 1 lm amplitude

sinusoidal displacement waveform. The final sphere of the

granular chain was in contact with a rigid support. All con-

tacts were assumed to be frictionless. This analysis was car-

ried out primarily as a validation exercise, to investigate the

agreement of the FEA with the discrete mechanics model

implemented by Hutchins et al.11

The mesh used for analysis of the dynamics of the six-

bead granular chain involving a rigid support is shown in

Fig. 3. The properties of chrome steel were defined by a

Young’s modulus of 201 GPa, a density of 7833 kg m�3, and

a Poisson’s ratio of 0.3.11 The FEA of a granular chain is ter-

minated by an annular support

A transient dynamic analysis was carried out using the

displacement time history obtained from laser vibrometry,

which was used as input data for the Cartesian y-component

of the displacement of the piston cylinder. The geometry of

the annular support in contact with the final sphere of the

chain was based on that used experimentally by Hutchins

et al.11 The annulus has an outer diameter of 0.55 mm and an

inner diameter of 0.3 mm. Its thickness along the Cartesian

y-direction is 0.5 mm. The outer surface of the annular sup-

port was assumed to be rigidly clamped. The surface of the

support in contact with the final sphere of the chain was

modified to avoid defining a contact region involving a sharp

edge, as this is known to cause numerical instability.19 A

toroidal surface was assumed, which results in a semi-circle

of radius 0.25 mm in the x-y plane. The mesh used for the

FEA of the six-bead granular chain involving an annular

support is shown in Fig. 4.

The support was assigned the properties of

EnvisionTECTM R11 liquid photopolymer resin, which

were obtained from the manufacturer’s datasheet.22 A value

of Young’s modulus of 1.4 GPa was used. The density of

the support was taken as 1235 kg m�3 and Poisson’s ratio

of 0.35. Dissipative effects in the granular chain include,

but are not limited to, viscoelastic losses as adjacent bodies

collide and frictional contact of the spheres with the holder

wall. To address the latter, a full three-dimensional model

would be required, as the holder inner diameter is slightly

FIG. 1. (Color online) Schematic dia-

gram of the experimental configuration

used for the acquisition of granular

chain displacement signals.

FIG. 2. (a) Normal displacement measured at the tip of the 73 kHz horn

transducer using a laser vibrometer. (b) Corresponding normalized FFT.
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larger than that of the spheres (to allow for movement of

the beads). Hence, in practice, the spheres are not perfectly

aligned. Such a model would introduce additional complex-

ities and is beyond the scope of the work described in this

paper. In the calculations in this paper, the dissipative

mechanisms were limited to viscoelastic damping. Two

types of viscoelastic damping models were considered. One

based on a velocity proportional damper and the other

based on a nonlinear formulation proposed by Kuwabara

and Kono.22 The latter effectively involves a damping coef-

ficient proportional to the square root of the distance of

approach between two adjacent spheres of the chain as they

collide. It was chosen to implement this formulation as it

features good representation of coefficients of restitution

for hard metallic materials.24 A value of 0.3 N s m�1 was

used for the damping coefficient of the dashpots in the

velocity proportional dashpot model. Comparisons with the

experimental results by Hutchins et al.11 were used as a

guideline to choosing this value, where the peak positive

value of the measured normal velocity of the last sphere of

the chain was used a reference. The authors acknowledge

that this approach is heuristic in nature. In the nonlinear

formulation proposed by Kuwabara and Kono,23 a value of

3.66� 103 N m�3/2 was used for the dissipative factor of

chrome steel, as derived from a least squares fit by

Kruggel-Emden et al.23 In both implementations, as adja-

cent spheres separated, the damping term was set to zero.

This was implemented by monitoring the positions of the

centers of the spheres at each time step of the analysis.

IV. RESULTS

A. Granular chain terminated by a rigid support: FEA
results

Figure 5 displays the y-component of the velocity at the

center of the final sphere of the granular chain as a function

of time, with the chain terminated by a rigid support. As

described in Sec. III, the piston axial displacement time his-

tory consisted of five cycles of a 73 kHz sinusoidal wave-

form. Results for both the FEA and the discrete mechanics

model are shown in Fig. 5, in which good agreement

between both models is shown. This provides confidence in

the protocol used in the FEA modeling, in terms of the mesh

density, the chosen time step and the overall accuracy of the

solver.

FIG. 3. (Color online) Mesh used for axisymmetric FEA of six-bead granu-

lar chain. The top-most sphere is excited by a rigidly vibrating cylindrical

piston. The bottom-most sphere is in contact with a rigid support. 3038 con-

tact elements and 7477 solid elements were used.

FIG. 4. (a) (Color online) Mesh used for axisymmetric FEA of six-bead granular chain. The top-most sphere is excited by a rigidly vibrating cylindrical piston.

The bottom-most sphere is in contact with an annular liquid photopolymer resin support, clamped at its outer diameter. 2267 contact elements; and 5397 solid

elements were used. (b) Three-dimensional visualization of mesh used for axisymmetric FEA of six-bead granular chain, cylindrical piston and annular

support.
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B. Granular chain terminated by an annular support:
Structural FEA results and validation

Figure 6(a) shows the time domain velocity of the last

bead of the granular chain measured using a laser vibrometer,

when the first sphere was excited using the horn transducer

used by Hutchins et al.11,12 Figure 6(b) displays the normal-

ized FFT of the velocity signal. Both these results have

already been published11 and are reproduced here for com-

parison purposes. It has been demonstrated by Hutchins

et al.12 that these types of impulses generated by exciting a

six-bead granular chain were only created when the experi-

mental conditions were correctly fine-tuned, an important

parameter being the input waveform amplitude. It was noted

in Sec. II C that there exists uncertainty in the normal dis-

placement acting on the first sphere of the chain, since this

quantity was measured without any mechanical loading of

the chain on the transducer. Furthermore, due to the fact that

the system under investigation is stongly nonlinear, its output

is likely to be highly sensitive to initial conditions. In order to

reflect this uncertainty, a sensitivity analysis to the input dis-

placement was carried out. The amplitude of the input dis-

placement which described the cylindrical piston motion was

multiplied by a scaling factor a which was varied between

0.3 and 1.5, in steps of 0.05. For each value of a, the velocity

of the final sphere of the chain obtained using FEA. It was

observed that for a¼ 0.5, the ratio of magnitude of the har-

monic at 24.3 kHz to that of the fundamental frequency for

this velocity reaches a maximum when the dissipative effects

were assumed to be represented by velocity proportional

dampers. Figure 6(c) shows the axial velocity time history at

the pole of the final sphere of the granular chain, predicted by

the FEA. This location corresponds to that at which the laser

vibrometer measurement was carried out by Hutchins et al.11

The velocity time history replicates features of the laser vibr-

ometer measurement reported by Hutchins et al.11 Indeed, a

similar train of impulses is predicted here using FEA.

Furthermore, the peak positive and peak negative amplitudes

are, respectively, 296 and �207 mm s�1 and the

corresponding experimental values are 289 and �247 mm

s�1. The FFT of the velocity waveform in Fig. 6(c) is dis-

played in Fig. 6(d). Figure 6(d) shows that the frequency con-

tent of the axial velocity of the final sphere of the chain bears

particular features. While there remains spectral content at

73 kHz, harmonics at 1/3rd and 2/3rd of this frequency are

also observed, together with ultraharmonics of these spectral

components. Such features were reported by Hutchins

et al.11,12 where it was shown that this behavior was depen-

dent on the excitation magnitude, the number of beads in the

chain and on how the latter was terminated.

Another similar sensitivity analysis was carried out

where the dissipative effects were represented by the nonlin-

ear dampers proposed by Kuwabara and Kono.22 All other

model parameters remained unchanged. While the axial

velocity of the final sphere of the chain was shown to result

in a train of impulses, its time and frequency domain charac-

teristics were distinct from those obtained when using veloc-

ity proportional damper. The set of results that best matched

the experimental behavior in terms of the peak positive

velocity was for a¼ 1.5. The velocity waveform of the last

sphere of the chai and its normalized FFT are displayed in

Figs. 6(e) and 6(f), respectively. Although Fig. 6(e) shows a

peak positive velocity of 214 mm s�1, the peak negative

velocity is �71 mm s�1 which is proportionally much lower

than the experimental value in Fig. 6(a). Additionally, the

spectral content displayed in Fig. 6(f) shows that the wave-

form in Fig. 6(e) has harmonics at half rather than 1/3rd and

2/3rd of the fundamental frequency.

The signals predicted by the FEA which most closely

match those observed by Hutchins et al.11 are those in Fig.

6(c), which were obtained using velocity proportional damp-

ers. Prior studies have demonstrated that dissipative effects

due to viscoelasticity in granular chains of chrome steel

beads may be more closely approximated by nonlinear

damper models.24 However, it appears that in this case,

velocity proportional dampers provide better agreement with

experimental results. There exist sources of dissipation other

than viscoelasticity, including friction with the holder, plas-

ticity of the beads, and viscous drag.1 It is therefore possible

that a more simplified model for damping in fact results in a

better heuristic description of the overall mechanisms for

dissipation. Clearly, further simulations and experimentation

would be required to confirm this. The effects of von Mises

stresses and their impact on plasticity have been studied

using FEA by Musson and Carlson16 demonstrating that

localized plastic deformation is a likely source of dissipation

in the experiments carried out by Lazaridi and Nesterenko.4

This is also likely to be the case in the experiments described

by Hutchins et al.11,12 Friction of the beads with the cylindri-

cal holder is also likely to be a source of dissipation, as is

viscous drag. The inclusion of such effects was considered

beyond the scope of the study. It is, however, acknowledged

that all the above phenomena, together with imperfect exper-

imental alignment of the beads and indeed the elasticity of

the holder, will play a role in the observed discrepancies

between experimental and FEA results. This statement is

supported by a recent study whereby, in granular chains fea-

turing stainless steel beads of 0.3 mm diameter, it was

FIG. 5. Axial component of the velocity at the center of the final sphere of

the granular chain terminated with a rigid support. Comparison of FEA and

discrete mechanics solution.
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demonstrated that the propagation of highly nonlinear soli-

tary waves was very sensitive to the presence of imperfec-

tions, including misalignment of the beads.25

While Figs. 6(c) and 6(d) bear similar features to Figs.

6(e) and 6(f), respectively, some discrepancies between the

FEA and experimental results exist. Indeed, the spectral con-

tent in the vicinity of 1/3rd and 2/3rd of the fundamental fre-

quency is more pronounced in the experimental case. Due to

the high nonlinearity of the system being studied, it is some-

what expected that differences between experimental obser-

vation and theoretical calculations should exist, due to

propagation of uncertainties in the system as time increases.

In addition to the methodology used for modelling mecha-

nisms of dissipation, which has been discussed in the previ-

ous paragraph, two other important sources of uncertainties

are present. The first is related to the pre-compression of the

granular chain. In practice, some pre-compression will

always be present when coupling the transducer to the first

sphere of the chain. Prior theoretical5 and experimental12

studies demonstrate that this is an important parameter

which has a strong effect on the dynamics of the chain. The

second source of uncertainty, which was mentioned in Sec.

II C, is the effect of the mechanical loading of the granular

chain on the vibration of the horn transducer tip. Hence, the

input displacement waveform shown in Fig. 2(a) may not in

fact be entirely representative of how the chain is excited,

and is likely to be overestimated. The sensitivity analysis

carried out here confirms this observation.

Another class of uncertainties arises from effects of par-

ticle rotation. In point bodies representing a continuum, a

generalized theory of elasticity accounting for the rotational

degrees of freedom of these bodies was proposed.26

Experimental observation of coupled rotational-translational

modes in 3D, hexagonal closely packed granular phononic

crystals has been recently carried out.27 Experimental evi-

dence of transverse rotational modes has also been observed

in a 1D magneto-granular phononic crystal, with beads of

15.875 mm diameter.28 Effects of nonlinear dynamic hyster-

esis, such as nonlinear absorption, have been shown to occur

in granular chains under torsional excitation.29

While the experimental configuration and excitation con-

ditions reported above differ somewhat from those described

in this paper, these particle rotation and nonlinear hysteretic

effects could constitute a further source of discrepancies

between FEA and experiment, since the FEA is limited to the

axisymmetric case. In practice, due to manufacturing toleran-

ces, the horn transducer used in the experiments described in

this paper is unlikely to result in a tip displacement which is

purely translational. Thus, contributions from undesirable

rotational excitations could distinctly affect the dynamics of

the granular chain. Further research is, however, required to

clarify the extent to which this occurs relative to other

unwanted effects. Quantifying these effects could be particu-

larly important when designing clinical devices where a

reproducible output within strict tolerances is required.

C. Acoustic pressure prediction using FEA

Following the results in Sec. IV B, it was decided that

the velocity proportional damping model provided a better

(a)

FIG. 6. Axial component of the velocity at the pole of the final sphere of the granular chain (a) measured using a laser vibrometer, (c) predicted with FEA

using velocity proportional damping coefficients and with an excitation displacement corresponding to the waveform in (a) scaled by 0.5, and (e) predicted

with FEA using a nonlinear damping coefficients based on the formulation by Kuwabara and Kono (Ref. 22) and with an excitation displacement correspond-

ing to the waveform in (a) scaled by 1.5. (b), (d), and (f) correspond to the normalized FFTs of the waveforms in (a), (c), and (e), respectively.
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description of the experimental configuration. It was there-

fore used in the FEA involving fluid/structure coupling, the

outcome of which is discussed in this section. The six-bead

granular chain under investigation was coupled to a half-

space of a fluid via a 0.25 mm thick cylindrical layer of vitre-

ous carbon. A displacement excitation was applied to the

steel piston in contact with the first sphere of the granular

chain, with a fundamental frequency of 73 kHz. The dis-

placement signal consisted of a 30 cycle sinusoidal wave-

form with a Gaussian envelope. A sensitivity analysis was

carried out, similar to that described in Sec. IV B, where the

amplitude of the driving signal was varied until the desired

train of impulses was generated. Such signals were observed

for a peak displacement of 3.96 lm. The input displacement

signal and its normalized FFT are shown in Fig. 7. The den-

sity of the acoustic medium was 1000 kg m�3. The speed of

propagation of compressional waves was 1500 m s�1. The

properties of vitreous carbon were those of Sigradur
VR

K, i.e.,

a Young’s modulus of 35 GPa, a density of 1540 kg m�3 and

a Poisson’s ratio of 0.15. The velocity of the final sphere of

the chain, in contact with the vitreous carbon cylinder, was

extracted from the FEA. The acoustic pressure was predicted

1 mm from the fluid/structure interface, along the axis of

symmetry of the configuration. These results, along with the

normalized FFT of the acoustic pressure signal, are shown in

Figs. 8(a), 8(b), and 8(c), respectively.

This set of results clearly shows that a pulse train is

propagated into the acoustic medium, with a peak acoustic

pressure of 14 kPa, 1 mm from the fluid/structure interface.

The acoustic signal has multiple harmonics and features

spectral content up to 0.95 MHz, at �21 dB relative to the

fundamental frequency. This set of results demonstrates the

potential for generating acoustic signals with frequency con-

tent of relevance to biomedical ultrasound applications.

V. CONCLUSIONS

In this paper, a finite element contact mechanics model

was presented for simulating the dynamics of a granular

chain, subjected to a tone burst excitation. The model was

initially validated against results from a discrete mechanics

model commonly used to simulate the dynamics of chains of

spheres in Hertzian contact. A rigid support was used to ter-

minate the chain in this validation exercise, as this could be

replicated in the discrete mechanics model. Good agreement

FIG. 7. (a) Piston excitation displacement waveform used for acoustic pres-

sure predictions. 73 kHz fundamental 30-cycle sinusoidal pulse with a

Gaussian envelope and with a peak value of 3.96 lm. (b) Corresponding

normalized FFT.

FIG. 8. (a) Axial component of the velocity at the pole of the final sphere of the granular chain, in contact with the cylindrical layer of vitreous carbon.

(b) Acoustic pressure predicted with FEA 1 mm from the fluid/structure interface on the axis of symmetry. (c) Normalized FFT of acoustic pressure wave-

form in (b).
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between both models was obtained. The FEA model was sub-

sequently modified to include an accurate model of the termi-

nation of the granular chain used in the experiments carried

out by Hutchins et al.11 This termination consisted of an

annular support made of a liquid photopolymer resin, rigidly

clamped around its outer diameter. The predicted axial com-

ponent of the velocity of the final sphere of the chain was

compared with the laser vibrometer measurement obtained

by Hutchins et al.11 Two types of viscoelastic damping mod-

els were implements: one based on velocity proportional

damping and another featuring a nonlinear damping coeffi-

cient proportional to the square root of the distance of

approach between the centers of two adjacent spheres. The

former provided good agreement with the experimental

waveform both in terms of its time domain and frequency

domain characteristics. The finite element model was then

extended whereby the granular chain was coupled to a half-

space of water via a thin layer of vitreous carbon. Under

specific excitation conditions, it was possible to generate fre-

quency content close to 1 MHz with a 73 kHz fundamental

excitation signal on the first sphere of the chain.

This work was carried out in view of simulating a trans-

duction mechanism which is of interest to biomedical ultra-

sound applications, whereby a narrowband excitation can

result in high-amplitude impulses which possess a broad

range of frequencies. The analyses presented in this paper

demonstrate that, despite the strong nonlinearities present in

the dynamics of the system under investigation, FEA is a

suitable tool for predicting both time and frequency domain

features of transmitted ultrasonic signals. Applications of the

resulting acoustic signals may then be studied for a range of

biomedical ultrasound applications. These include therapeu-

tic ultrasound, medical imaging and targeted drug delivery.

FEA will enable configurations which present challenges

using discrete mechanics formulations to be investigated

thoroughly, and suitable transducer designs arrived at.
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