Boris Johnson’s English Channel bridge: an engineering expert’s view

Boris Johnson, the UK foreign secretary, has proposed building a bridge across the English Channel near Boulogne-sur-Mer in France. Some have described the idea as grandiose. Learning under the political and financial challenge of such a project, it is even more feasible to find funding to start building a bridge next year after years of earlier discussions coming to nothing.

For as long asDreams are coming to nothing, because a bridge will be a massive project that would face huge financial challenges. Even if the initial design stage does not start until 2020, the project would not be completed until the late 2020s. This means that such a bridge would not be in place for the 2030s, the anniversary of the end of the First World War.

Features of the Dream

A bridge would cost around £7 billion, which is around $9 billion. The cost would be covered by the UK and French governments. This would be a massive investment, but it is possible that this would be the cost of building a bridge across the English Channel.

The bridge would be around 50 miles (80km) long, which is around 90km. The bridge would be built on a site selected by the government of the United Kingdom and France.

The bridge would be a cable-stayed bridge, which would have three spurs and a main span, as it is a bridge across the Channel. The bridge would have hundreds of pylons and cables, as the English Channel is a busy shipping lane.

The bridge would have a single cable-stayed span, which would mean a total pylon height well above 500m. Again, nothing this tall has ever been built.

Leaving aside the political and financial challenge of such a project, it is even more feasible to find funding to build a bridge next year after years of earlier discussions coming to nothing.

Possible solution

Following the lead of the Danyang–Kunshan Grand Bridge in China, it may be possible to complete a cable-stayed bridge, but it is in a far more suitable setting to build a bridge of this scale. The bridge would be around 50 miles (80km) long, which is around 90km. The bridge would have hundreds of pylons and cables, as the English Channel is a busy shipping lane.

There would be too small a market to justify building such a bridge, because a bridge would be too small to justify building a bridge of this scale. Also, the English Channel is too wide to justify building a bridge of this scale. It would be even more challenging to build a bridge across the English Channel.

The Channel is between 40m and 60m deep and some passenger ships are over 300m wide. To support the cables you would need to add pylons above the deck, which would mean a total pylon height well above 500m. Again, nothing this tall has ever been built.

To support the cables you would need to add pylons above the deck, which would mean a total pylon height well above 500m. Again, nothing this tall has ever been built.

The bridge would be around 50 miles (80km) long, which is around 90km. The bridge would have hundreds of pylons and cables, as the English Channel is a busy shipping lane.

The Channel is between 40m and 60m deep and some passenger ships are over 300m wide. To support the cables you would need to add pylons above the deck, which would mean a total pylon height well above 500m. Again, nothing this tall has ever been built.

To support the cables you would need to add pylons above the deck, which would mean a total pylon height well above 500m. Again, nothing this tall has ever been built.

The Channel is between 40m and 60m deep and some passenger ships are over 300m wide. To support the cables you would need to add pylons above the deck, which would mean a total pylon height well above 500m. Again, nothing this tall has ever been built.

The Channel is between 40m and 60m deep and some passenger ships are over 300m wide. To support the cables you would need to add pylons above the deck, which would mean a total pylon height well above 500m. Again, nothing this tall has ever been built.

The Channel is between 40m and 60m deep and some passenger ships are over 300m wide. To support the cables you would need to add pylons above the deck, which would mean a total pylon height well above 500m. Again, nothing this tall has ever been built.

The Channel is between 40m and 60m deep and some passenger ships are over 300m wide. To support the cables you would need to add pylons above the deck, which would mean a total pylon height well above 500m. Again, nothing this tall has ever been built.

The Channel is between 40m and 60m deep and some passenger ships are over 300m wide. To support the cables you would need to add pylons above the deck, which would mean a total pylon height well above 500m. Again, nothing this tall has ever been built.

The Channel is between 40m and 60m deep and some passenger ships are over 300m wide. To support the cables you would need to add pylons above the deck, which would mean a total pylon height well above 500m. Again, nothing this tall has ever been built.

The Channel is between 40m and 60m deep and some passenger ships are over 300m wide. To support the cables you would need to add pylons above the deck, which would mean a total pylon height well above 500m. Again, nothing this tall has ever been built.

The Channel is between 40m and 60m deep and some passenger ships are over 300m wide. To support the cables you would need to add pylons above the deck, which would mean a total pylon height well above 500m. Again, nothing this tall has ever been built.

The Channel is between 40m and 60m deep and some passenger ships are over 300m wide. To support the cables you would need to add pylons above the deck, which would mean a total pylon height well above 500m. Again, nothing this tall has ever been built.