Machine-learning material properties with domain knowledge of the interatomic bond

Thomas Hammerschmidt, Alvin Ladines, Aparna Subramanyam, Jan Jenke, Yury Lysogorskiy, Ralf Drautz ICAMS, Ruhr University Bochum, Germany

> David Pettifor MML, Oxford University

Atomistic simulations of structural materials

screw dislocation in bcc-Fe

screw-dislocations in high-entropy alloys

magnetic phase-transitions in Fe

 $(\cdot \land)$

edge dislocation in superalloys

RUB

Coarse-graining from DFT to TB to BOP

Tight-binding

Lanzcos recursion algorithm

transformation of TB Hamiltonian to new basis $\{|u_0
angle, |u_1
angle, |u_2
angle, \dots\}$

start at atomic-like state $\ket{u_0}$ and generate $\ket{u_{n+1}}$ recursively using

$$b_1|u_1\rangle = \left(\hat{H} - a_0\right)|u_0\rangle \qquad b_{n+1}|u_{n+1}\rangle = \left(\hat{H} - a_n\right)|u_n\rangle - b_n|u_{n-1}\rangle$$

in this basis TB Hamiltonian takes tri-diagonal form

RUB

Haydock, Comp Phys Comm 1980 Lanczos, J Res Natl Bur Stand 1950

Continued fraction

interpretation: 1d Lanzcos chain with only nearest-neighbor matrix elements

inversion of tridiagonal Hamiltonian by Greens functions yields continued fraction

$$n_{i\alpha}(E) = -\frac{1}{\pi} \operatorname{Im} \frac{1}{E - a_0 - \frac{b_1^2}{E - a_1 - \frac{b_2^2}{E - a_2 - \frac{b_3^2}{\cdot}}}$$

truncation after certain number of recursion levels \rightarrow linear-scaling BOP

Connection to moments

interpretation: 1d chain with only nearest-neighbor matrix elements

choose atomic orbital as starting orbital of Lanzcos chain

$$\mu_{Ilm}^{(n)} = \langle \varphi_{Ilm} | \hat{H}^n | \varphi_{Ilm} \rangle = \langle u_0 | \hat{H}^n | u_0 \rangle$$
$$= \sum_{i_1 \dots i_{n-1}} \langle u_0 | \hat{H} | u_{i_1} \rangle \langle u_{i_1} | \hat{H} | u_{i_2} \rangle \cdots \langle u_{i_{n-1}} | \hat{H} | u_0 \rangle$$

direct relation of recursion coefficients to moments

$$\mu_{Ilm}^{(1)} = a_0 \mu_{Ilm}^{(2)} = a_0^2 + b_1^2 \mu_{Ilm}^{(3)} = a_0^3 + 2a_0b_1^2 + a_1b_1^2$$

ICAMS RUB

Moments expansion of DOS

6/

second moment (rms width)

$$\mu_i^{(2)} = \int \epsilon^2 n_i(\epsilon) d\epsilon = \sum_j \langle i | \hat{H} | j \rangle \langle j | \hat{H} | i \rangle$$

third moment (skewing)

$$\mu_i^{(3)} = \int \epsilon^3 n_i(\epsilon) d\epsilon = \sum_{jk} \langle i | \hat{H} | j \rangle \langle j | \hat{H} | k \rangle \langle k | \hat{H} | i \rangle$$

fourth moment (bimodality)

$$u_i^{(4)} = \int \epsilon^4 n_i(\epsilon) d\epsilon = \sum_{jkl} \langle i|\hat{H}|j\rangle \langle j|\hat{H}|k\rangle \langle k|\hat{H}|l\rangle \langle l|\hat{H}|i\rangle$$

Moments link electronic and crystal structure

Convergence with moments

Moments based descriptors

normalisation of lowest moments

$$\mu_{i\alpha}^{(0)} = 1$$
 $\mu_{i\alpha}^{(1)} = 0$ $\mu_{i\alpha}^{(2)} = 1$

rotation invariance

(• /

$$\mu_i^{(N)} = \frac{1}{N_{orb}} \sum_{\alpha} \mu_{i\alpha}^{(N)}$$

independent descriptors based on 3rd and 4th moment

$$a_{i,1} = \mu_i^{(3)}$$
 $b_{i,2} = \sqrt{\mu_i^{(4)} - (\mu_i^{(3)})^2 + 1}$

electronic-structure based descriptor of local atomic environment

RUB

Jenke, Subramanyam, Densow, TH, Pettifor, Drautz, PRB 2018

Low-dimensional map of structural similarity

clear separation of typical 2D and 3D crystal structures

Transformation paths

transformation paths mark region of simple structures

Random structures with one Wyckoff site

random structures (1 atom) fill region of simple structures

Map of local atomic environments

RUB

Jenke, Subramanyam, Densow, TH, Pettifor, Drautz, PRB 2018

(• /

Moments link electronic and crystal structure

Influence of bandfilling on structural stability

canonical sp-valent TB with variation of valence-electron number N_e

structural trend with band filling incorporated in descriptor

Jenke, Subramanyam, Densow, TH, Pettifor, Drautz, PRB 2018

Comparison to DFT calculations

Mo in 1-atom and 2-atom random structures (VASP with PBE, PAW)

smooth trend of E_0 , V_0 , $B_0 \rightarrow$ domain knowledge of interatomic bond

RUB

Jenke, Subramanyam, Densow, TH, Pettifor, Drautz, PRB 2018

Application in machine learning

transparent conductors: $(AI_xGa_yIn_z)_2O_3$

challenge: formation energy and bandgap

DFT: 2400 train (public), 600 test (secret)

~ 900 participants/teams

(• /

Final results of competition for test set

Sutton, Ghiringhelli, Yamamoto, Lysogorskiy, Blumenthal, TH, Golebiowski, Liu, Ziletti, Scheffler npj Comp Mat 2019

€∧MS **RU**B

Final results of competition for test set

	350-		Public Private			
Ranking	ML representation + regression method	Band ga	p energy	Formation energy		
		Root mean square log error	Mean absolute error (meV)	Root mean square log error	Mean absolute error (meV/cation)	
1st	<i>n</i> -gram+KRR	0.077	114	0.021	15	
2nd	c/BOP+LGBM	0.081	93	0.022	15	
		0.001	00	0.021	12	

Sutton, Ghiringhelli, Yamamoto, Lysogorskiy, Blumenthal, TH, Golebiowski, Liu, Ziletti, Scheffler

npj Comp Mat 2019

c/BOP+LGBM solution

Relative feature importance

band gap

highest importance for electronic-structure based descriptors mu, an, bn

More chemistry by bond-specific Hamiltonians

description of chemistry: d-valent and sp-valent canonical TB Hamiltonians

Downfold DFT eigenspectra to TB minimal basis

Database of bond-specific H for dimers

Mo-Mo dimer

database of pairwise TB parameters

recover canonical TB models

Jenke et al. (submitted)

Application to intermetallic phases

A15, C14, C15, C36, σ , χ , μ phases in ternary Ni-Al-Re and subsystems

Prediction of formation energy (preliminary)

Property

Kernel ridge regression

Train error (meV/at): 44 +/- 2 Test error (meV/at): 74 +/- 10

U bond	39%	0%	1%	0%	1%	41%	1.0
atomicRadius	10%	0%	1%	0%	1%	12%	
electronegativity	3%	0%	1%	0%	1%	5%	
Nd	1%	0%	0%	0%	4%	5%	0.8
b 1 CN	3%	0%	0%	1%	1%	4%	0.0
a_2_CN	3%	0%	0%	0%	1%	4%	
a 1 CN	3%	0%	0%	0%	0%	4%	
concentration vector	3%	0%	0%	0%	1%	3%	0.6
b_5_CN	1%	0%	1%	0%	1%	3%	
b 4 CN	2%	0%	0%	0%	0%	3%	
ionizationEnergy	1%	0%	1%	0%	1%	2%	
a_3_CN	1%	0%	1%	0%	0%	2%	0.4
b_3_CN	1%	0%	0%	0%	1%	2%	
b_6_CN	1%	0%	0%	1%	0%	2%	
a_5_CN	1%	0%	0%	0%	0%	2%	
b_2_CN	1%	0%	0%	0%	0%	2%	0.2
a 4 CN	1%	0%	0%	0%	0%	2%	
density	1%	0%	0%	0%	0%	1%	
Total	76%	0%	9%	3%	12%	100%	0.0
	CN12	CN13	CN14	CN15	CN16	Total	0.0

Maximum importance: bond energy, atomic radius

LGBM

(. /

Train error (meV/at): 36.8 +/- 1.4 Test error (meV/at): 77 +/- 5

Prediction of bulk modulus (preliminary)

Kernel ridge regression

Train error (GPa): 13.10 + - 0.38Test error (GPa): 14.25 +/- 1.51

							 - 10
b_6_CN	31%	0%	0%	0%	0%	31%	1.0
atomicRadius	8%	0%	2%	0%	3%	13%	
U bond	5%	0%	2%	1%	4%	12%	
b 2 CN	11%	0%	1%	0%	0%	12%	0.8
density	2%	0%	5%	0%	1%	8%	0.0
b 3 CN	4%	0%	1%	0%	0%	6%	
a 4 CN	3%	0%	0%	0%	0%	4%	
b_4_CN	1%	0%	0%	1%	1%	3%	0.6
a 5 CN	2%	0%	0%	0%	0%	2%	
a 2 CN	1%	0%	0%	0%	0%	1%	
a 3 CN	1%	0%	0%	0%	0%	1%	
electronegativity	1%	0%	0%	0%	0%	1%	0.4
Nd	0%	0%	0%	0%	0%	1%	
a 1 CN	1%	0%	0%	0%	0%	1%	
b ⁻¹ CN	0%	0%	0%	0%	0%	1%	
concentration vector	1%	0%	0%	0%	0%	1%	0.2
b_5 CN	1%	0%	0%	0%	0%	1%	
ionizationEnergy	0%	0%	0%	0%	0%	1%	
Total	73%	1%	13%	3%	10%	100%	0.0
	CN12	CN13	CN14	CN15	CN16	Total	0.0

Maximum importance: b6, atomic radius, bond energy, b2

LGBM

Train error (GPa): 7.9 + - 0.3Test error (GPa): 14.9 +/- 1.7

Conclusion

electronic-structure based descriptors

- coarse-graining DFT \rightarrow TB \rightarrow BOP
- moments link atomic structure and electronic structure
- low-dimensional representation of local atomic environments
- complete and homogeneous samplings of atomic environments
- chemistry-aware descriptor includes valence-type and band-filling
- bond-specific pair-wise Hamiltonians from downfolding DFT eigenspectrum

applications

- smooth variation of formation energy, volume and bulk modulus
- formation energies and bandgaps of transparent oxides
- formation energies and bulk moduli of intermetallic phases
- high relative importance of descriptors with domain knowledge

funding: DFG, SFB/TR103, DAAD, IMPRS SurMat, EPSRC

####