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Overview

Amajor challenge in modern materials modelling techniques is the pre-
diction of the optical properties of chromophores in complex environ-
ments. This problem is inherently multiscale. Consider a system such
as a dye in solvent: the optical properties dependant on photoexcited
processes act on a ps-ns timescale, the dye needs to be sampled on a
long ns-µs timescale, coupled with the long-ranged solvent interactions
on a scale of 10s of nm.
Progress on the prediction of optical properties has been made using
linear-scaling time-dependant DFT8,11. However, the need for sam-
pling over large time-scales combined with large length-scales means
the computational demand remains very high. This project will use
Machine Learning (ML) to attempt to accelerate the current state-of-
the-art techniques used in optical properties prediction.

Fig. 1: Catechol

Goals

As an initial target for this project a protocol for generating excited state
potential energy surfaces (PES) of organic molecules will be produced.
An exemplar system that will be treated as a case study for this project
is photodissociation of the molecule catechol10,4.

Investigating ML Toolkits

1. AMP5

2. SchNetPack7: in particular SchNOrb6 and SchNarc9

3. MLatom3

4. GAP1: with particular interest in recent work on organic
molecules2

Fig. 2: AMP Calculators trained on AIMD dataset thermostated at 300K, tested on an unseen data.
Clockwise from top left: Ground State, First Excited State, Second Excited State

Excited State PES

• Training Neural Network potentials off DFT data for Ground and
Excited States of catechol

• Some preliminary results shown in Fig. 2

Binding Curve

• Using a Machine Learned PES, the binding curve for the H+-
dissociation of catechol following absorption from UV-light will
be investigated.

• Enhanced sampling will be necessary to retrain around the disso-
ciation pathway to improve the binding curve and PES.

Fig. 3: Exploring the Dissociation Pathway. As we extend the O-H bond length of catechol, we move
along the red arrow, however we must also explore the sides of this potential (blue arrows).

Future...

• Further investigations into solvents
• Prediction of excited state lifetimes using MLMD
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