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Motivation

The tight binding model is a simple quantum mechanical model lying, both in terms of computational cost and
accuracy, between empirical interatomic potential methods and expensive ab initio calculations. Due to the
underlying eigenvalue problem, a naive implementation of tight binding models requires O(N?) computational
cost, where N denotes the number of particles in the simulation.

If the quantities of interest in a simulation are mechanical properties, then it may be advantageous to
entirely bypass the electronic structure model and replace it with an interatomic potential (IP). The recent
transfer of machine learning technology into this domain has made it possible to “fit" high-accuracy IP models,
which makes this approach particularly attractive. A starting assumption in most |IP models for materials is that
the potential energy surface can be decomposed into site energies.

A partial justification for this assumption was given in [2, 3] for linear tight binding models at finite
Fermi—temperature. For nuclei positions y = {y,}, it was shown that the total potential energy E(y) can be
decomposed into exponentially localised site contributions:

E(y) = Z E«(y),  where ‘0gg}fy)‘ < eyl (1)
/ n

for some 17 > 0. The exponent 7 in (1) measures the interatomic interaction range. Classical IPs are typically
fairly short ranged, which is only justified if 7 is not too small.

Unfortunately, in general, 7 ~ 371, where (3 is the inverse Fermi-temperature. This means that, for
moderate to low temperature regimes, the practical value of (1) is limited.

We demonstrate that for insulators, the presence of a spectral gap significantly improves the estimate.
Specifically, we show that (1) holds with 7 independent of 3, but instead 7 is linear in the spectral gap.
Moreover, we demonstrate that “pollution” of the spectral gap by a point spectrum caused, for example, by
local defects in the crystal, affects only the pre—factors, but not the exponent 7 in (1).

Tight Binding Model

We take a reference A C R? and an atomic configuration y: A — R satisfying a uniform non—interpenetration
condition (Im > 0 s.t. |y(¢) — y(k)| > m). For a given configuration y, we suppose that the Hamiltonian takes
the following form: for h: RY — RY continuously differentiable, we have

H(y)iw = h(y(€) = y(k)).  where  |0°h(¢)] < e 7. (2)

While nuclei are treated as classical particles, we assume that electrons are described by a grand canonical
potential model (Fermi—temperature, volume and chemical potential, j, are fixed). For a finite system, we may
diagonalise the Hamiltonian (H(y)us = Asis where [[1)s]| = 1), and define the grand potential:

%log(l — fa(z —p)) if < o0
2(z = p)X(—oopy(2z) if B =o00.

where  ¢’(z; ) = { (3)

Here, 3 := (kg T) ! is the inverse Fermi—temperature and f3 := (1 + ¢”*)~! is the Fermi-Dirac occupation
distribution. The zero temperature case (5 = 00) is defined as the 8 — oo limit and is justified in [6].
We may distribute the total energy amongst the atomic sites to obtain a spatial decomposition:

E°(y) =) E(y) where E’(y)=> ¢(\sp)wsl’. (4)
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For a given configuration y, inverse Fermi—temperature (3, and chemical potential ;1 & o(H(y)), we define the
following constants which will determine the interatomic interaction range:

0 {dist (1 + 5, 0(H(y)))

mino(H(y)) N (i, 00) — maxo(H(y)) N (—oo, u) if f = o0,

if 8 < o0

(5)

These constants are displayed in Figure 1 for two atomic configurations: a homogeneous lattice, and a point
defect configuration (which introduces finitely many additional eigenstates between the bands).
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Figure 1: Cartoon depicting the spectrum of the homogeneous (blue) and defect (red) Hamiltonians as well as the corresponding
constants dg from (5).

Theorem 1 (General Locality Estimates) There exist a constant n; = 1);(/3) such that
VE(y)
Oly(mi)l; - - - dly(my)];

< Ce >0t () —y(my)] (6)

where n; = cmin{1,dg}.

Sketch Proof We write the site energies using resolvent calculus,

EX) =~ oz ) (Hly) — 2)7 dz (7)
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(for an appropriate contour ¢’ ) and conclude by applying a standard Combes—Thomas resolvent estimate (and
determining the appropriate constants), together with properties of the analytic continuation of ¢”.

As depicted in Figure 1 and demonstrated numerically in Figure 2, a point defect introduces finitely many
additional eigenvalues between the spectral bands. This means that the constants defined in (5) may become
arbitrarily small for low temperatures and thus, by Theorem 1, we obtain locality estimates with arbitrarily small
exponents. WWe may however improve upon these estimates:

Theorem 2 (Locality Estimates for Point Defects) Let C**", ™! be the constants from Theorem 1 when
applied to the reference Hamiltonian H**!. For a point defect configuration y, there exists C;,, such that

OE, (y)

Oy (m)l];

with similar estimates for higher derivatives.

S Cgme_nrefp/(é)_)/(m” Where ’CKm o Cref| < e_nref(|€|+|m|_|€_m|) (8)

Sketch Proof The Hamiltonian for a system with a point defect can be approximated by a finite rank update
of the reference Hamiltonian: H(y) ~ H*" + Pgr. We can therefore apply (7) together with the following
Woodbury identity:

(M) —2) "= (1 —2) 7 = (= 2) 7 (1 + Pe (1 = z)_l)_l Per (M —2) "

The first contribution results in the improved exponents while the second only increases the pre—factor (but
away from the defect core, this pre—factor decays exponentially to the reference pre—factor).
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Numerical Experiments

We use the NRL tight binding model [5], implemented in Julia [1], to test the locality in bulk carbon and
silicon, both with and without an interstitial defect. Our two test systems are diamond cubic bulk carbon and
bulk silicon, which provide ideal test cases of our theory due to their clearly defined band gaps (approximately
0.98 eV for Si and 3.83 eV for C). For both elements, we simulate a supercell model consisting of 5 x 5 x 5
diamond cubic unit cells, containing 1000 atoms in total.

Next, we create a self-interstitial near the origin, and observe the expected pollution of the band gap in the
defect system. By adjusting the position of the interstitial, we are able to create configurations where an
eigenvalue is arbitrarily close to the Fermi level, creating a challenging situation to confirm our results.
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Figure 2: Band structure of C (left) and Si (right).

To test the locality of interatomic interaction we evaluate first and second site energy derivatives and
obtain the expected exponential decay. For the defective systems we plot the data points for the interstitial site
itself (“|y| small”) as well as for the site that has the largest distance to the interstitial atom (“|y| large”).
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(a) Decay of site energy derivatives. (b) Decay of site energy hessians.
Figure 3: Carbon: Locality of site energies in homogeneous lattice and defect system.
© homogeneous lattice . @ homogeneous lattice
0. o defect, |y, small | : - defect ]
’ 0
10 o defect, |ye|large 1079 i
:®
3402 3
B 10 E 5
10
107
107 |
0 0 5 10 15 20 25

Toi 1 T

(a) Decay of site energy derivatives. (b) Decay of site energy hessians.

Figure 4: Silicon: Locality of site energies in homogeneous lattice and defect systems.

We clearly observe the exponential decay of interaction strength as predicted in Theorem 1. Moreover, we also
observe that for sites far from the defect the site derivative decay perfectly matches that of the bulk system.
Two additional observations were unexpected for us: (1) the decay of site derivatives for “near-defect sites”
does not exhibit the increased pre—factor that we predicted; however we do see this increase in the second
derivatives. (2) the decay of interaction in the silicon system is nearly identical (after rescaling by the lattice
constants) to the carbon system even though silicon has a much smaller band gap.

Conclusions

We have described a site energy decomposition for simple linear tight binding models (at both finite and zero
Fermi—temperature) and shown that the site contributions are exponentially localised. We have also shown that
the exponents in these estimates are independent of the discrete spectrum inside the band gap caused by point
defects, and even the pre-factors converge to the pre—factors that would result from using the homogeneous site
energy in the estimates, as the distance of a site to the defect increases. Numerical results strongly support our
analysis, but also point to possible further extensions.

See [7] for an extension to self—consistent tight binding models.
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