Quantifying statistics of heterogeneous porous media attributes across scales Matthew Harrison. Supervisors: Dr Mohaddeseh Mousavi-Nezhad, Dr Thomas Hudson.

Increment Scaling Behaviour Aims and Objectives $\Delta P(s)$ Distribution results Current: Governed by all three parameters of GSG; Variance of $U(\sigma_{\mu})$, Variance of $G(\sigma_{G})$ and Correlation - Stochastically represent porosity Coefficient of $G(\rho)$. and conductivity fields, for input to = 0.403 (Variance of U) **0**₁₁ a groundwater finite element $\sigma_G = 0.0831$ (Variance of G) program. ······ Future aims: - Extend GSG to mixture of two materials - bimodal. - Determination of conductivity distributions when porosity data is 1.00 exclusively available. 0.75 σ **Applications** 0.50 Must quantify statistical behaviour from sparse field data collection to model: 0.25 Carbon Capture and Storage 0.00 Fracking 22.5 37.5 67.5 52.5 7.5 Subsurface pollution remediation Ц БП Norway CCS plant in North Sea [1] 0.2 0.3 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 -0.3 -0.2 -0.1 -0.3 -0.2 -0.1 0.1 0.2 0.3 0 0.1 0 Increment Distribution $\Delta P(s)$ Methodology Maximum Likelihood Estimates used Gaussian Leptokurtic to fit Generalized Sub-Gaussian model (GSG) to a neutron porosity dataset from Ashwaz field, South Western Iran.

References: 1. https://tinyurl.com/y6ldzc9m, 2. Guadagnini, A., Riva, M. and Neuman, S.P., 2018. Recent advances in scalable non-Gaussian geostatistics: The generalized sub-Gaussian model. Journal of hydrology, 562, pp.685-691.

WARW/I

THE UNIVERSITY OF WARWICK

GSG Definition

$$P'(\mathbf{x}) = U(\mathbf{x})G(\mathbf{x})$$

P': Porosity fluctuations from mean (random field)

U: Independent random positive definite subordinator (log-normal) G : Zero-mean Gaussian Random Function

Increments:

$$\Delta P(\mathbf{s}) = P(\mathbf{x} + \mathbf{s}) - P(\mathbf{x})$$

"Difference between pairs of porosity values with a given lag distance between them"

