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The engineer viewpoint : materials have purpose
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Materials function
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Material performance space

[Ashby, 2013]
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But materials need to be processed...
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Shape and function : stiffer

[Ashby and Bréchet, 2003]
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Shape and function : more compliant

[Ashby and Bréchet, 2003]
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Shape and function : taxonomy

[Christophe, 1899] 8
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Shape and function : large-scale 3D printing of UHPC

1st additively manufactured structural element in France

Development of tangential continuity slicing [Gosselin et al., 2016]

Spin-off company created : XtreeE 9

https:/xtreee.com
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Spatial scale for architectured materials

Adapted from [Bouaziz et al., 2008] 10
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Morphology, not a new idea...

How to use morphology (topology + shape + scale) within architectured materials?

[Ashby, 2011]
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Optimising the morphology

[Tovar et al., 2006] [Laszczyk, 2011] 12
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Architectured materials

In summary :

Architectured materials are a rising class of materials that
bring new possibilities in terms of functional properties, filling the
gaps within the materials performance space.

This includes any material obtained from a design process
aiming at fulfilling a specific set of requirements through a given
functionality, behavior, or performance induced by an
engineered morphological arrangement between multiple
material phases .

The development of architectured materials is intrinsically
transdisciplinary, on the fringes of materials science, and
mechanical engineering, but also biology, mathematical
morphology, architecture, design, etc.
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Example : entangled stochastic fibrous media
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Example : nanolayered coextruded polymers

[Bironeau et al., 2016, Bironeau et al., 2017, Messin et al., 2017] 15
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Example : laser-architectured metal sheets (1/2)
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Example : laser-architectured metal sheets (2/2)

Pierre Lapouge’s postdoc (2017-2019)
Zhige Wang’s PhD thesis (2019-)[Lapouge et al., 2019] 17
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Example : elastoplastic auxetic lattices

[Dirrenberger et al., 2011, Dirrenberger et al., 2012, Dirrenberger et al., 2013] 18
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Example : 3D pre-buckled auxetic lattices

Frédéric Albertini’s PhD thesis (2017-)[Albertini et al., 2019] 19



Architectured Materials Propagating material instabilities Outlook

Plan

1 Architectured Materials
Introduction to architectured materials
Examples

2 Propagating material instabilities
Context & motivation
Architecture & material instabilities
Macroscopic behavior & localisation modes
Experimental testing

3 Outlook



Architectured Materials Propagating material instabilities Outlook

Plan

1 Architectured Materials
Introduction to architectured materials
Examples

2 Propagating material instabilities
Context & motivation
Architecture & material instabilities
Macroscopic behavior & localisation modes
Experimental testing

3 Outlook



Architectured Materials Propagating material instabilities Outlook

Context : ALMARIS ANR-funded project

Antoine-Emmanuel Viard’s PhD thesis (2017-)
20
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Goals

Goals : Provide numerical tools for the design of architectured
materials exploiting material instabilities.

Computational modelling of the material instabilities
Determine the effect of geometry on the onset of material
instabilities
Harness instabilities through architecture

Hypothesis on material instability modelling

Analogue propagation is assumed for martensitic
transformation front in SMA and plasticity front in low carbon
steel (Piobert-Lüders phenomenon).

21
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From the structure to the unit cell

Lattice materials
intermediate length scale
periodic unit-cell repeated

22
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Mechanical behavior of lattices

(a) mechanism ; (b) structure ; (c) selfstressed mechanism

Figure adapted from [Deshpande et al., 2001]

Triangular lattice Hexagonal lattice Square lattice
Stretch-dominated Bending-dominated Stretch-dom.

bending-dom.

23
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Phenomenological model

Nonlinear isotropic work-hardening function

R(p) = R0 + Q1(1− e−b1p) + Q2(1− e−b2p) + Q3(1− e−b3p)

R0 Q1 b1 Q2 b2 Q3 b3
100 -100 80 400 10 5 500
[Tsukahara and Iung, 1998, Mazière and Forest, 2015]

24
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Problem statement

Architecture
Choice of geometry
(lattice...)
Macroscopic behavior

Material
Plastic strain instability
Localisation and
propagation

Problem
How do instabilities propagate in periodic media?

25
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Computational homogenization

Σ∼ = 〈σ∼〉 E∼ = 〈ε∼〉

σ∼ (x ) ε∼ (x )

Σ∼ = C
≈
: E∼

Macroscopic constitutive equation

σ∼ (x ) = c
≈
(x ) : ε∼ (x )

Microscopic constitutive equation
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Use of periodic boundary conditions (PBC){
u = E∼ .x + v ∀x ∈ V with v # on ∂V and,
t = σ∼ .n ∀x ∈ ∂V with t −# on ∂V

26
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Numerical framework

PBC

27
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Simulation of the triangle lattice

28
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Two types of response

Bending-dominated lattices

Low stiffness - Neither peak
nor plateau stress
� Non propagating behavior
for Lüders instabilities

Stretch-dominated lattices

High stiffness - Both peak and
plateau stress
� Propagating behavior for
Lüders instabilities

29
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1. Non propagating instabilities

Cumulated plastic strain for bending-dominated lattices tension in horizontal direction.

30
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2. Propagating instabilities

Cumulated plastic strain for stretch-dominated lattices tension in horizontal direction.

31
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RVE size : square lattice

32
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Macroscopic behavior for several unit cells

Square oriented at 0 deg w.r.t. the

tensile direction. Square oriented at 45 deg w.r.t. the

tensile direction.

� What definition for the RVE in case of instabilities?

33
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Architectured samples

34
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Stretch-dominated structure

35
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Bending-dominated structure

36
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Conclusions & perspectives

Conclusions [Viard et al., 2020]

� Interactions between architecture and material instabilities
� Specific behavior identified for each geometry
� Qualitative experimental validation of the computation

Perspectives

37
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Conclusions & perspectives
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Finally...

Conclusions & outlook

The emergence of architectured materials is fostered by the
development of advanced manufacturing techniques. Localised
material processing allows for intricate architecturation, enabling
new possibilities in terms of material properties.

Controling the propagation of plastic instabilities, or phase
transformation front, through architecture seems like a promising
approach to develop new actuating or adaptive material systems.

Developing architectured materials necessitates a
transdisciplinary approach, please get in touch if you would like
to collaborate with our group ! We’ll welcome you in Paris, once
COVID is over...

39
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