Multiscale modelling of surfaces and interfaces

Karen Johnston

Department of Chemical and Process Engineering University of Strathclyde, Glasgow, U.K.

University of Warwick May 2018

Surfaces and Interfaces

Two examples

- 1) Polymer nanocomposites
- 2) Self-assembled monolayers

Ag/Nylon composites www.tf.uni-kiel.de/matwis/matv/img/fpnc1.jpg

Biomineralisation ww2.chemistry.gatech.edu/~kro eger/Kroeger/biomineralization. html

1) Polymer nanocomposites

Properties determined by soft-hard matter interfaces Challenging for simulation and experiment

Key Questions

How does the surface affect the polymer

- structure
- dynamics

What is the interphase width?

Polystyrene thin film on Au(111)

Fritz et al. Macromol. 42 7579 (2009)

What is the effect of the surface on polymer properties? What is the interphase width?

Multiscale modelling - DFT to MD

GOAL: Bridge time and length scales

- [1] Johnston, JPCC **115** 14707 (2011)
- [2] Johnston, Soft Matter 8 6320 (2012)
- [3] Johnston, Macromolecules **46** 5741 (2013)

Hierarchical multiscale approach

Building block approach

We want accurate polymer-surface interactions but quantum calculations of polymer chain on surface not feasible.

Divide and conquer!

Assumption: polystyrene = benzene + ethane

Image from Macromol. **42** 7579 (2009)

Classical surface interaction should reproduce the quantum adsorption energy for a variety of molecular orientations.

Density functional theory results

- Customised VASP 4.6 code
- DFT + vdW-DF using PBE exchange [1,2]
- Obtain adsorption energies $E_{\rm ads}(z)$ for different orientations

Benzene flat

Benzene vertical

Ethane flat

Ethane vertical

- [1] Dion PRL **92** (2004)
- [2] Gulans PRB **79** (2009)

- Ground state configuration of benzene is flat on hollow site
- Weak site dependence
- Adsorption is due to vdW forces
- Ethane adsorbs much more weakly than benzene

$E_{\rm ads,gs}$ (kJ/mol)		
Present [1]	82.1	
Ref [2]	77.2	
DFT+D [3]	73.3	
Expt TDS [4]	61.8	

- [1] Johnston JPCC **115** (2011)
- [2] McNellis PRB **80** (2009)
- [3] Tonigold JCP **132** (2010)
- [4] Syomin JPC 105 (2001)

Hierarchical multiscale approach

Develop AA pair potentials for surface

Obtain DFT and AA adsorption energy $E_{\rm ads}(z)$ for configuration, k

$$E_{\text{ads }k}^{\text{AA}} = \sum_{i=1}^{N} \sum_{j=1}^{M} V(r_{ij}, \mathcal{E}_{ij}, \mathbf{r}_{0 \ ij}...)$$

Adjust pair potential parameters to minimise energy difference between DFT and AA for all configurations:

$$\Delta E = \sum_{k} w_{k} \left(E_{\text{ads } k}^{\text{AA}} - E_{\text{ads } k}^{\text{DFT}} \right)^{2}$$

Repeat for all "building blocks" e.g. ethane

 $V(r_{ij})$ is classical AA pair potential e.g. LJ or Morse N molecule and M surface atoms k configuration (orientation, distance)

AA potentials for benzene on Au

Morse potential for benzene/Au

2 atom pairs, C-Au, H-Au → 6 parameters

$$V_{\rm M}\left(r_{ij}\right) = \varepsilon_{ij} \left[\exp\left(-2\alpha_{ij}\left(r_{ij} - r_{0ij}\right)\right) - 2\exp\left(-\alpha_{ij}\left(r_{ij} - r_{0ij}\right)\right) \right]$$

Morse potential is good fit for both flat and vertical orientations Does not describe site dependence but this is a small effect

Morse potentials for benzene and ethane

Benzene more strongly adsorbed than ethane

- [1] Syomin JPC **105** (2001)
- [2] Wetterer JPCB **102** (1998)
- [3] Johnston JPCC **115** (2011)
- [4] Johnston SM 8 (2012)

Hierarchical multiscale approach

Classical atomistic molecular dynamics

Density profiles

Film reaches bulk density ≈1.5 nm from surface

Structure - chain conformation

 $R_{\rm e}$ = end-to-end vector

Conformation tensor:

$$C_{\alpha\beta} = 3 \left\langle \frac{R_{e \alpha}.R_{e \beta}}{\left\langle R_{e}^{2} \right\rangle_{\text{bulk}}} \right\rangle$$

- Near surface, tensor components are:
 - extended in x and y
 - compressed in z
- Chains oriented parallel to surface

Time autocorrelation function

Comparison with experiment

Positron Annihilation Lifetime Spectroscopy (PALS)

- Positron lifetimes measure the free volume
- Similar system: 18-mer PS on Au(111)
- Observed a decrease in positron lifetime for PS near Au surface, corresponding to an increase in density
- PALS estimate an interphase ~ 10 nm

A free volume analysis of the simulations show that the free volume in the bulk is higher than the free volume in the film.

Qualitative agreement between simulation and experiment.

[Butt et al, Macromol. 47 8459 (2014)]

Free volume in 10 nm PS film

Hierarchical multiscale approach

CG Model for Polystyrene

Model developed by Fritz et al Macromol. 42 7579 (2009)

Each monomer represented by 2 beads

Explicitly accounts for tacticity of chain

Reproduces well the density and chain conformations for the polystyrene melt.

Polystyrene (PS)

Image from Macromol. **42** 7579 (2009)

Development of CG surface potentials

AA MD constraint dynamics of short chain on surface

Effective potentials

Calculated for:

- iso- and syndiotactic chains
- bead positions along chain

Phenylene beads

- exhibit stronger interaction than backbone
- end beads more attractive than central beads

Backbone (ethylene) beads

 no strong position dependence

Tacticity has only a weak influence

Validation of CG potentials

Compare AA and CG results

Structural properties

0

Bead density

- First density peak in good agreement with AA results
- Unlike AA, CG has high second peak, due to central P beads
- Discrepancy due to spherical approximation

Conformation tensor

- Chains orient along the surface
- Excellent agreement between AA (symmetrized) and CG results

Hierarchical multiscale approach

Long chain polystyrene films

For **10 monomer** chains the

- density reaches its bulk value after 1-2 nm
- conformation tensor becomes bulk-like after 1-2 nm.

What about longer chain systems?

Density reaches bulk after ~1.5 nm, independent of chain length

Conformations profile depends on chain length

Interphase width vs chain length

[Johnston and Harmandaris, Macromol, 46 5741-5750 (2013)]

What about the CG dynamics?

Compare AA and CG mean square displacements (msds)
CG time faster than AA time

For **bulk** CG msds map to AA msds via a **scaling factor** Scaling factor is **model-dependent**

Dynamics of CG model

CG dynamics are faster at the surface

Fast equilibration for structural properties

Problem: Time scaling not possible for this case

Solution: Add corrugation/site-dependence to surface

Approach

Optimise CG pair potentials in an analogous way to the AA case

Work in progress...

Summary for polystyrene thin films

Hierarchical multiscale approach: DFT to AA to CG

AA results:

- relaxation times for bulk in agreement with experiment
- structurally qualitative agreement with PALS

CG model:

- can simulate longer chains and thicker films
- in excellent structural agreement with AA model

Future work:

- Calculate dielectric spectra/relaxation times for thin film
- Develop an improved model for CG surface potential

2) Self-assembled monolayers

Bottom up synthesis of graphene nanoribbons

Graphene nanoribbon

Challenge: control the self-assembly of molecules to design new structures

Adsorption of halogenated molecules

What is the effect of the surface?

On Au(111) physisorption only

On Pt(111) aromatic molecules have two adsorption states:

- physisorbed
- chemisorbed

This system is bistable and the stability of each state can be tuned via type and number of halogen atoms

DFT results of how chlorination affects adsorption on Pt(111)

Functionalisation can **tune** the relative depth of the minima. Can we use this to control self-assembly behaviour? Develop lattice Monte Carlo (MD) to account for adsorption state. Use DFT results to parameterise the Lattice MC model.

Hexagonal Lattice Model

Molecule—surface interactions

Physisorbed or chemisorbed state

Molecule—molecule interactions

Relative orientation of molecules

$$H = \sum_{\langle i \rangle} E_{ads}^{s_i} + \frac{1}{2} \sum_{\langle ij \rangle} k_{s_i, s_j} E_{ij}^{l_i, l_j}$$

Mol-surf

Mol-mol

Sara Fortuna, et al., JCP **144**, 134707 (2016)

Hexagonal Lattice Model

Possible moves:

- Physisorbed to/from chemisorbed state
- Translation only when physisorbed
- Rotation by 30° only when physisorbed

At every simulation step, a move is attempted and accepted/rejected following the Metropolis acceptance probability:

$$P_{old \rightarrow new} = \min \left[1, \exp \left(\frac{E_{old} - E_{new}}{k_B T} \right) \right]$$

Hexahalogenated molecules on platinum

Consider first:

C₆H₆, C₆F₆, C₆Cl₆, C₆Br₆

Mol-mol orientations:

0-0, 0-30, 30-30

- All: 0-0 least favorable
- Br, CI: 0-30 most attractive
- **F:** 30-30 slightly more attractive than 0-30
- H: 0-30 equal to 30-30

Sara Fortuna, et al., JCP **144**, 134707 (2016)

Hexahalogenated molecules on platinum

Consider first:

 C_6H_6 , C_6F_6 , C_6CI_6 , C_6Br_6

Mol-surf orientations:

Phys vs chem

	Echem (eV)	Ephys (eV)
C_6H_6	-1.61	-1.03
C_6F_6	-1.37	-1.02
C ₆ Cl ₆	-0.85	-1.56
C ₆ Br ₆	-1.67	-1.89

R. Peköz, et al J. Phys. Chem. C 118 6235 (2014)

- Br, CI: Physisorption stable
- **F**, **H**: Chemisorption stable

Lattice MC simulations:

- 50x50 lattice with N=1025 molecules
- Initial random state, position and orientation
- Begin simulation at high T, run 5000N steps, reduce T

- Single phase transition
- Arrested disordered chemisorbed monolayer

- Three phase transitions
- Low temperature ordered physisorbed monolayer

Low temperature state for C_6Cl_6 and C_6Br_6

- C₆H₆ and C₆F₆ arrested disordered chemisorbed states
- C₆Cl₆ and C₆Br₆ ordered, packed physisorbed states

Limitations and validation

Model does not account for desorption or dissociation Model should be extended to lower symmetry molecules Extend lattice to account for multiple adsorption sites

Experimental comparisons:

- a) Benzene forms disordered structures on Pt(111) [1,2]
- b) Fluorination results in more ordered monolayers for pentacene on Cu(100) and for copper phthalocyanine on Cu(100), Au(100) and Au(111) [3,4,5]
- [1] Wander et al. Surf. Sci. **249**, 21 (1991)
- [2] Yau et al. J. Am. Chem. Soc. **118**, 7795 (1996)
- [3] de Oteyza et al. Chem. Phys. Lett. **490**, 54 (2010)
- [4] de Oteyza et al. J. Chem. Phys. **133**, 214703 (2010)
- [5] Krauss et al. ChemPhysChem 10, 2445 (2009).

Self-assembled monolayers summary

- Halogenated aromatic molecules show bistability on Pt(111)
- Developed a lattice model to investigate phase behaviour
- C₆H₆ and C₆F₆ get stuck in disordered chemisorbed states
- C₆Cl₆ and C₆Br₆ form ordered packed physisorbed states

Sara Fortuna, et al., JCP **144**, 134707 (2016)

Acknowledgments

- •Vagelis Harmandaris, University of Crete, Greece
- •Kurt Kremer, Max Planck Institute for Polymer Research
- •Experimental collaborators, MPIP and Kiel, Germany
- Javier Cardona-Amengual, Leo Lue, University of Strathclyde
- •Rengin Pekoz and Davide Donadio, formerly at MPIP
- Sara Fortuna, University of Udine, Italy
- David Cheung, University of Galway, Ireland

Funding

- German Research Foundation priority program DFG SPP 1369
- Royal Society of Edinburgh International Bilateral Exchange Programme
- Supercomputing on Archie-WeSt, supercomputer for the West of Scotland, and Rechenzentrum Garching, Max Planck Society

Thanks for your attention!