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Introduction

. A CPU is effectively a multi-purpose device, it runs operating

systems, web browsers, scientific computation and many
more.

Field Programmable Gate Arrays (FPGAs) are a type of
computer chip which is repeatedly reconfigurable.

- An FPGA is essentially a large array of low level logical units

which can be wired together to form a configuration (called a
bitstream).

Each configuration is designed for a specific task.

Loosely, because the FPGA can be configured for a specific

task it may be able to solve that task much more efficiently
than a CPU.
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FPGA Industry

38%

13%

49%

" Xilinx © Altera ® Others

There are two major players in the FPGA market



Where are FPGAs mostly used

Industry Sector

B Communications -
Wireline

B Communications -
Wireless

H Test & Measurement

B Consumer

B Automotive

B Ind ustrial

® Medical

= Military / Aerospace

® Other



So whats new?

December 2015 Intel
buys Altera

Incoming Xeon
processors, with FPGA
Coprocessors.




Spatial Computing Paradigms

Computing with an FPGA requires a different mindset to
ordinary software programming.

. We construct a deep pipeline (assembly line) on the
substrate of the chip.
Parallelism comes from arithmetic units each doing a small
part of the work on some piece of data, then passing it on.

. The available space on the chip is finite, the pipeline must
fit!

. We call this type of computing Dataflow (the data flows
through the pipeline).




Vs SIMD

Most often in Scientific Computing parallelism comes in the
form of Single Instruction Multiple Dispatch.

. The same instruction is applied to many pieces of data
(probably in an array), each thread gets one piece of data.
Once this instruction has completed on all pieces of data a
new instruction may be issued.

In dataflow computing we may have Multiple Instruction
Single Dispatch.
A stream of data is passed through Multiple Instructions.




Control-flow Machine

o

The CPU is a single entity
handling data and control

_

CPU




Simple CPU Pipeline

Instruction
Fetch

: Instr. Decode : Execute

Reg. Fetch :  Addr. Calc

Memory : Write
Access : Back

Next PC

Next SEQ PC

ext SEQPC

j

WB Data

IR <= mem[PC];
PC <= PC + 4

A <=
B <=

Reg[IR, ]} ‘WB <= rslti

Reg[IR, . ]i

rslt <= A Opp,, B

Reg[IR_ ] <= WB




Control-flow Computing example:
IBM POWER 8, 12 cores @ 4 GHz

|||||||

22nm SOI, eDRAM, 15 ML 650mm?2,12 cores (SMT8)



Spatial Computing Machine

' Only the final
Customized dataflow - nly the fina
results

machine

DFE

* DFE — DataFlow Engine
* Kx — (compute) Kernel




Control Flow versus Data Flow

e Control Flow:
— Instructions “move”
— Data may move along with instructions (secondary issue)
— Order of computation is the key

e Data Flow:

— Data moves through a set of “instructions” in 2D(ish)
space

— Data moves will trigger control

— Data availability, transformations and operation latencies
are the key




Control Flow versus Data Flow




Data Flow specific properties

* No needed for:
— shared memory
— program counter
— control sequencer
— branch prediction

* Special mechanisms are required to:
— data availability detection
— orchestration of data tokens and “instructions”

— chaining of asynchronous “instruction” execution




Dataflow Computing

* A custom chip for a specific application

* No instructions => no instruction decode logic

* No branches => no branch prediction

e Explicit parallelism => No out-of-order scheduling
e Data streamed onto-chip = No multi-level caches

Rest of the My Dataflow
world Engine
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Converting Simple Expression

Yy, =x,xx;+30

for (inti=0; i < DATA_SIZE; i++)
ylil=x[i] * x[i] + 30;

Input stream of integer elements ‘X’

Output stream of integer elements ‘y’



Flowing elements
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Flowing elements
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Flowing elements

b 4 3|21 0




Flowing elements

b

4

¥

(




Flowing elements




Flowing elements

1 C




Flowing elements

b 4

10

30

31 34




Flowing elements

1 (

30

31

34 3




Flowing elements
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Flowing elements
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The Full Kernel

public class MyKernel extends Kernel {

public MyKernel (KernelParameters parameters)
{

super (parameters) ;

DFEVar x = i1o0.1in ', dfeInt (32));

30

DFEVar result = x * x + 30;

io.output ("y", result, dfeInt(32));
}
}

_




Enabling large scale dataflow designs

Real data flow graph as
generated by MaxCompiler
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Generating data on chip

* How can we implement this?
for (int 1 = 0; 1 < N; i++) {
qli] = pli]l + i;
}

How about this?

DFEVar p = io.input (“p”, dfeInt(32));
DFEVar 1 = 1o.input (“1i”, dfelInt(32));

DFEVar g = p + 1i;
io.output (“q”, g, dfeInt(32));

Yes.... But, now we need to create
an array i in software and send it to
the DFE as well




Generating data on chip

* There is very little ‘information’ in the i stream.
— Could compute it directly on the DFE itself

DFEVar p = io.input (“p”, dfelInt(32));
DFEVar 1 = control.count.simpleCounter (32, N);
DFEVar g = p + 1;

io.output (“q”, q, dfeInt(32));
‘ Half as many inputs
Less data transfer

* Counters can be used to generate sequences of numbers

 Complex counters can have strides, wrap points, triggers:
e E.g.if (y==10) y=0; else if (en==1) y=y+2;




Stream Offsets

e So far, we’'ve only performed operations on each
individual point of a stream
— The stream size doesn’t actually matter (functionally)!
— At each point computation is independent

* Real world computations often need to access values
from more than one position in a stream
— For example, a 3-pt moving average filter:

)/3

V=X +Xx,+Xx

i+1




Stream Offsets

e Stream offsets allow us to compute on valuesin a
stream other than the current value.

e Offsets are relative to the current position in a stream;
not the start of the stream

e Stream data will be buffered on-chip in order to be
available when needed — uses fast memory (FMEM)

— Maximum supported offset size depends on the amount of
on-chip SRAM available. Typically 10s of thousands of points.




Moving Average in MaxCompiler

14 class MovingAverageSimpleKernel extends Kernel {

15

16 MovingAverage SimpleKernel(KernelParameters parameters) { "
17 super(parameaters);

18

19 DFEVar x = io.input("x", dieFloat(8, 24));

20

21 DFEVar prev = stream.cffset{x, —1);

22 DFEVar next = stream.offset(x, 1);

23 DFEVar sum = prev + X + next:

24 DFEVar result = sum / 3;

25 3
26 io.output("y”, result, dieFloat(g, 24)),

27 }

28}




Kernel Execution




Kernel Execution




Kernel Execution




Kernel Execution




Kernel Execution




Kernel Execution




Boundary Cases

What about the
boundary cases?




More Compl

ex Moving Average

* To handle the boundary cases, we must explicitly

code special ca

Vi =3

ses at each boundary

-

(x, +x,,)/2 ifi=0
(x,,+x)/2 ifi=N-1

(X, tXx;,+x,,)/3 otherwise



Kernel Handling Boundary Cases

14 class MovingAweragekemel extends KEinEII-f

15

[ Mioving#Aweragekamsl(KernalFarameters paramealars) |
17 super(Darameters);

18

1% A& Inprk

24 DFEVar x = io.input{“x", dfeFloat{d, 24});

3|

22 DFEMar size = ie.scalarlnput*size”, dielini(32));
23

24 ¥ Dala

25 DFEVar prevOriginal = stream offsel(x, —1);

28 DFEVar nexlOriginal = slream allsal{x, 1}:

2r

28 W Conrol

29 DFEVar count = central count simplaCauntara2, size);
a0

3 DFEVar abovel owerBound « eaunt = 0]

az DFEVar belowUpperBound = count < size — 1;

33

34 DFEVar wiminBounds = abovelowerSound & belowlUpperBound,
35

36 DFEVar prev = abovelowerBound ¥ prevOriginal ; 0;
ar DFEVar next = balowl ipparBound 7 nextOriginal : 0
38

349 DFEVar divisor = withinBounds 2 constantvar{diaFloat(, 24}, 3) :
40

41 DFEVar sum = prey + x + nexi;

42 DFEVar result = sum ! divisor ;

43

44 io.output("y", resull, diaFloal{8, 24)};

45 1

% ]




Starting on Scientific Computing

e Often in scientific computing, compute may be structured
as nested loops.

® On FPGA the length of these for loops becomes critical.

e The reason for this is that the space on the chip is limited,
at some point there will be a cutoff where the loop is too
large to be unrolled.

® Now follows some discussion on the types of cases which
may occur.




Loop Unrolling in space with
Dependence

for (1 = 0; ; 1 += 1) {
float d = input([i];
float v = 2.91 - 2.0*d;
for (iter=0; iter < 4; iter += 1)
v=v* (2.0 -d?*wv);

output[i] = v;

}

DFEVar d = io.input(”d”, dfeFloat(8, 24));
DFEVar TWO= constant.var(dfeFloat(8,24), 2.0);
DFEVar v = constant.var(dfeFloat(8,24), 2.91) - TWO*d;

for (int iteration = 0; iteration < 4; iteration += 1) {
v =v*(TWO- d*v);
}

io.output(”output” , v, dfeFloat(8, 24));




Loop Unrolling with Dependence

float d = input;
float v = 2.91 - 2.0*d;

for ter=0; iter < 4; iter += 1)
(2.0 — d * v);

output = v;

DFEVar d = io.input(”d”, dfeFloat(8, 24));
DFEVar TWO= constant.var(dfeFloat(8,24), 2.0);
DFEVar v = constant.var(dfeFloat(8,24), 2.91) - TWO*d;

for (int iteration = 0; iteration < 4; iteration += 1) {
v=Vv*TWO- d*v;
}

io.output(”output” , v, dfeFloat(8, 24));

*The software loop has a cyclic dependence (v)
*But the unrolled datapath is acyclic




Variable Length Loop

int d = input;
int shift = 0;

while (d != 0 && ((d & Ox3FF) != 0x291)) {
shift = shift + 1;
d=d > 1;

}
output = shift;

}
output = shift;

* Find maximum number of iterations
* Predicate execution of loop body
* Using a bool that is set to false when the while loop condition fails

(o
n
. . . “« ”
* What do we do with a while loop (or a loop with a “break”)? £
// converted to fixed length f
int d = input;
int shift = 0; f
bool finished = false;
for (int i = 0; 1 < 22; ++i) {
bool condition = (d !'= 0 && ((d & Ox3FF) != 0x291)); f
finished = condition ? true : finished; // loop-carried
shift = finished ? shift : shift + 1; // dependencies
d=d > 1; t
f
f
f
f

O 00 N O 1 B W N B
~+ e~ & & e+ —Hh —h —h —h
o o o1 L1 L1 A W N




Variable Length Loop — in hardware

int d = input;

int shift = 0;

bool finished = false;

for (int i = 0; 1 < 22; ++1i) {
bool condition=(d!=0&& ( (d&0x3FF) !=0x291)) ;
finished = condition ? true : finished;
shift = finished ? shift : shift + 1;
d=d>1;

}

int output = shift;

DFEVar d =io.input(”d”, dfeUInt(32));

DFEVar shift = constant.var(dfeUInt(5), 0);

DFEVar finished = constant.var(dfeBool(), 0);

for (inti=0;i<22;++){ // unrolled
DFEVar condition = d.neq(0)&((d&0x3FF).neq(0x291));
finished = condition ? constant.var(1) : finished ;
shift = finished ? shift : shift + constant.var(1);
d=d>>1;

}

io.output(”output”, shift, dfeUInt(5));

control  :

d
0 i 0 [
finished - shift
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X1 0
finished ©mux
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To Unroll or Not to Unroll

* Loop Unrolling

Gets rid of loop-carried dependency by creating a long pipeline
Requires O(N) space on the chip...what if it does not fit?
If we can’t unroll, we end up with a cycle in the dataflow graph

As we will see, we need to take care to make sure the cycle is compatible with
the pipeline depth

* Variable-length loop (with loop-carried dependency)

Can be fully unrolled, BUT need to know maximal number of iterations
Utilization depends on actual data...

What if max iterations is much larger than average? Or max is not known? Or
max iterations don’t fit on the chip?




Unrolling in time - Acyclic pipeline

® This poor throughput is unacceptable.
® The answer isto do 13 partial sums.

: input
|
sum = 0.0; :
for (int 3=0; j<M; j += 1) { |
sum = sum + 1nput(j]; < j > 0 1 o0
} |
output = sum; : s el :
: :
L | I
I !
e Carrying dependency across cycles is quite ! .
different. ! 4
e A floating point adder takes 12 cycles, and a !
mux one. |
e Hence the mux plus add takes 13 cycles, we e !
can only receive an input every 13 cycles. .
l
|
|
|
|
|

control data output

_



input[0], input[13], input[26]...

| * After aninitial
0.0 2 |3 5 7 el el Bl Il Output[0] pipeline fill

. _ _ phase, all 13
input[1],/input[14], input[27]... pipeline stages

are occupied

. DOSOEEEOONOEE - -
| | independent

summations
input[2], input[15], input[28]... are computed

in parallel
+ HEENEEENENnEE o

input[3], input[16], input[29]...

. PODOOONDBENEE -




Towards some Linear Algebra

Execution order
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Data dependence
(a) row-sum (h) column-sum

* Example: Row-wise summation is serial due to chain of dependence

e Column-wise summation would be easy

* So we can keep the pipeline in a cyclic data datapath full by flipping the
problem —ie by interchanging the loops

N:




Multiple row sums simultaneously using
one adder

Execution order &OLL Tl SR bl -;(NI—’,?)
* Idea: sum a block of rows at a - AN ER S
time (“tiling”) mrErany Yy yvvyyvvyvy
* We can choose the tile size il TR kAl
* Just big enough to fill the c
pipeline B AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR 4
* SO No unnecessary buffering ! N
is needed BEEE= =
*cisthe Iength of the feedback Bk i i i e i
loop, depending on the
number format for the 7 P [ O
accumulator (12 for floating e L R L R R R L i 1
point). oata cepencence | [t e e

(OJ:lr) (M_‘%\l)

|‘ 16cm _|




Number Representation

* Microprocessors:
- Integer: unsigned, one’s complement, two’s complement,
- Floating Point: IEEE single-precision, double-precision

e Others:
— Fixed point
— Logarithmic number representation
— Redundant number systems: use more bits, compute faster
* Signed-digit representation
e Residue number system (modulo arithmetic)
— Decimal: decimal floating point, binary coded decimal




Fixed Point Numbers

e Generalisation of integers, with a ‘radix point’

* Digits to the right of the radix point represent
negative powers of 2

Digit weights: | 2° | 2° | 22 | 2! | 2° @ 2% | 27 | 23 | 2* | 2°
(unsigned) \ Y \ Y i

| bits F bits

* F=number of fractional bits
— Bits to the right of the ‘radix point’

— Forintegers, F=0




Fixed Point Mathematics

* Think of each number as: (V x 2F)

 Addition and subtraction: (V1 x 2°71) + (V2 x 27F2)
— Align radix points and compute the same as for integers

1 oo | 1| o@@1 |0 | 0|1
+ 1 | o | 1 1 @0 | 1 [0 |0
= .431 1 1 | 0| 1@:1 1 | o 1
* MUltIplI UUIT. (VLI X Z JA\VZXZ [J=VIAVZAXACZ
1 | 0o@1 | 0
X 1 o | 1| o0o@o0 | 1o
= 0 | 1 1 | o | o | 11 |0 |1




Floating Point Representation

sign- | mantissa | -base™*""
* regular mantissa = 1.XXxxxx

* denormal numbers get as close to zero as possible:
mantissa = 0.xxxxxx with min exponent

* |EEE FP Standard:
base=2, single, double, extended widths

* Computing in Space:
choose widths of fields + choose base

* Tradeoff:
— Performance: small widths, larger base, truncation.
— versus Accuracy: wide, base=2, round to even.

* Disadvantage: Floating Point arithmetic units tend to be very
large compared to Integer/Fixed Point units.




Arithmetic takes Space on the DFE

* Addition/subtraction:

— ~1 logic cell/bit for fixed point,
while it takes hundreds of logic cells per floating point op
* Multiplication: Can use MULT blocks
— 18x25bit multiply on Xilinx Vertex6

— Number of MULTs depends on total bits (fixed point) or
mantissa bitwidth (floating point)

Approximate space cost models

_ Floating point: dfeFloat(E, M) Fixed point: dfeFix(l, F, TWOSCMP)

MULTSs LUTs MULTs LUTs
Add/subtract 0 O( Mxlog,(E) ) 0 |+F
Multiply O( ceil(M/18)?) O(E) O( ceil((1+F)/18)? ) 0
Divide 0 Oo( M?) 0 O( (1+F)?)

| = Integer bits, F = Fraction bits. E = Exponent bits, M = Mantissa Bits
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MULT usage for N x M multiplication

M

Bits

18
20
22
24
26
28
30
32
34
36
38

40
42

44

46

48

50
52
54




What about error vs area tradeoffs

= Bit accurate simulations for different bit-width configurations.
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[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating
solvers for global atmospheric equations through mixed-precision data flow engine, FPL2013




Finally

* FPGAs are coming

 FPGA (hardware) programming requires a
different mindset than software programming.

* Algorithmic differences

 Numerical differences




