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Reinforcement Learning

Defines very general framework for sequential decision-making
Play Atari games, Go, StarCraft
Make a humanoid walk
Robotics

Learning by trial-and-error
Improves with experience
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Recent Success

2013, DQN in Atari
Learning to play many classic Atari games with human performance

2016, AlphaGo
Learning to play Go, and win against 18-time world champion by 4-1
Initially trained on thousands of human amateur and professional games
to learn how to play Go

2017, AlphaGo Zero
World’s best Go Player
No initial training, learns to play simply by playing games against itself,
starting from completely random play

2017-2108, Deep RL in Robotics
Learning of locomotion behaviours in rich environments
Learning dexterity
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https://www.youtube.com/watch?v=p4Kem0wQoHs&feature=youtu.be
https://www.youtube.com/watch?v=8tq1C8spV_g&feature=youtu.be
https://www.youtube.com/watch?v=4Sm922Xp5N4&feature=youtu.be
https://www.youtube.com/watch?v=hx_bgoTF7bs&feature=youtu.be
https://www.youtube.com/watch?v=jwSbzNHGflM&feature=youtu.be


RL vs. Supervised Learning

Data
Non-i.i.d, sequential data
Depends on agent’s actions

Supervision
No ground-truth labels, only a reward signal
Mostly delayed, sometimes very sparse
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RL Challenges

Sample inefficiency: e.g. 200 years of real-time play experience
Reproducibility: More sensitive to hyper-parameters and random seeds
than supervised learning
Long term credit assignment: Feedback is not immediate. Which series
of actions are actually responsible for the high reward?
High variance
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The RL Problem

Environment: Markov Decision Process (MDP)
Agent: Decision maker

Definition (MDP)
A Markov Decision Process is a tuple 〈S,A, T ,R, γ〉

S is a finite set of states
A is a finite set of actions
T is a state transition function
R is a reward function
γ is a discount factor
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The RL Problem

Definition (Markov Property)

A state st is Markov iff P[st+1|st ] = P[st+1|s1, . . . , st ]

Current state captures all relevant information from the history
If st is known, s1, . . . , st−1 may be thrown away

Ozsel Kilinc (WMG) MADRL with Extremely Noisy Obs. WCPM Seminar, 2019 10 / 60



The RL Problem

1 Environment emits state st ∈ S
2 Agent executes action at = µ(st) : S → A
3 Environment emits scalar reward r t = R(st , at)
4 Environment emits next state st+1 = T (st , at)
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The RL Problem

Reward r t

Scalar feedback signal provided by the environment, e.g. AV
+ if the AV reaches the destination
− for the time spent on the road
− for accident

Indicates how well agent is doing at step t
Actions may have long term consequences, rewards may be delayed
Sacrificing immediate reward r t may bring more in the future

e.g. Refuelling may help go further
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The RL Problem

Return Rt

The total discounted rewards from time-step t
r t + γr t+1 + γ2r t+2 + · · ·+ γT r t+T

The discount factor γ ∈ [0, 1]
γ → 0: “myopic” evaluation
γ → 1: “far-sighted” evaluation

The agent’s goal is to select actions to maximise E[R t ]
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Components of an RL Agent

Policy: Agent’s behaviour
A mapping from state domain to action domain S → A
Deterministic policy µ, i.e. at = µ(st)
Stochastic policy π, i.e. π(a|st) = P[at = a|st ]
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Components of an RL Agent

Value function: Prediction of the Return
To evaluate the goodness/badness of states and/or actions
To select between the actions
The state-value function Vπ(s) = Eπ[R

t |st = s]
The action-value function Qπ(s, a) = Eπ[R

t |st = s, at = a]
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Components of an RL Agent

Model: Agent’s representation of the environment
A model to predict what the environment will do next
Estimations of the state transition function T and the reward function R

Learning vs. Planning
Learning: Model is unknown, agent interacts with the environment
Planning: Model is known, agent performs computations with its model
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Learning the Optimal Policy

Policy evaluation: Estimate V π or Qπ

Policy improvement: Generate π′ ≥ π
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Policy Evaluation V → V π

Dynamic programming TD-learning

Monte-CarloExhaustive search 
Sampling

Bo
ot

st
ra

pp
in

g

* full backups 
* model-based 
* expectation

* sample backups 
* model-free 
* empirical mean

* deep backups 
* uses actual return

* shallow backups 
* uses estimated return 

V(st) α rt + γV(st+1)

V(st) α Rt

V(st) ← 𝔼[rt + γV(st+1) |st]

Vπ(st) = 𝔼[Rt |st]

rt + γVπ(st+1)

Rt = rt + γrt+1 + …
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Temporal-Difference Learning

Model-free: No knowledge of MDP
Exploits Markov property
Can learn online after every step
Can learn from incomplete sequences, by bootstrapping
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Policy Improvement π′ ≥ π

Improve the policy by acting greedily w.r.t. V π

π′ = greedy(V π)

When using sample backups, exploration becomes important
ε-greedy:

With probability 1− ε choose the greedy action
With probability ε choose an action at random
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Q-Learning

Policy evaluation: Apply TD to Qπ(s, a)

Policy improvement: Use ε-greedy

1 Q(st , at)
α←− r t +max

a′
γQ(st+1, a′)

2 Q → Qπ

3 π′ ← ε-greedy(Qπ)

Theorem
Q-Learning control converges to the optimal action-value function,
Q(s, a)→ Q∗(s, a)
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Deep RL

So far we considered lookup tables to represent V π(s) and Qπ(s, a)

An entry per s, or s, a pair
Problem: We want to solve large MDPs e.g. Go: 10170 states

Too many states and/or actions to store in memory
Too slow to learn each value individually

Solution: Using function approximation such as Neural Networks
Vπθ (s, ω) and Qπθ (s, a, ω)
Generalise from seen to unseen
Learn parameters ω inside the RL paradigm using SGD

Ozsel Kilinc (WMG) MADRL with Extremely Noisy Obs. WCPM Seminar, 2019 23 / 60



Convergence with Approximation

Lookup table Linear Non-linear

Monte-Carlo 3 (3) 7

Q-Learning 3 7 7

No theoretical guarantee, but empirically it works well
Tricks to help Q-Learning work with NNs

Using experience replay
Using fixed Q-targets
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Experience Replay

Store all transitions (st , at , r t , st+1) experienced by the agent in a
replay buffer D
Update parameters ω using a mini-batch of transitions (s, a, r , s ′)
sampled from D
Without XP: Updating ω using data ∼ πk

With XP: Updating ω using data ∼ {π0,π1, . . . ,πk}
Stabilises the learning
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Fixed Q-Targets

Goal: Update ω to minimise (Qπ(s, a;ω)− target)2

Problem: The value of target also changes with each update
target = r + γmax

a′
Qπ(s ′, a′;ω)

Solution: Compute targets w.r.t. old, fixed parameters ω′

target = r + γmax
a′

Qπ(s ′, a′;ω′)

Once in every U steps, update ω′ with ω and then keep fixed until next
update
Stabilises the learning
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Deep Q-Networks (DQN) [2]

1 Take action at w.r.t. ε-greedy(Qπ)

2 Store transition (st , at , r t , st+1) in replay memory D
3 Sample a random mini-batch of transitions (s, a, r , s ′) ∼ D
4 Optimise MSE between the Q-Network and the target Q-Network using

SGD

L(ω) = Es,a,r ,s′∼D
[
(Qπ(s, a;ω)−y)2

]
y = r + γmax

a′
Qπ(s ′, a′;ω′)

(1)

Ozsel Kilinc (WMG) MADRL with Extremely Noisy Obs. WCPM Seminar, 2019 27 / 60



Deep Q-Networks (DQN) in Atari [2]

End-to-end learning from pixels to Qπ(s, a)

State is stack of raw pixels from last 4 frames, st ∈ R4×84×84

Action is one of 18 discrete joystick/button positions, at ∈ R18

Reward is the change in the score
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Actor-Critic RL

So far we considered value-based RL
Policy evaluation: Learnt value function, e.g. Qπ(st , at ;ω)
Policy improvement: Implicit policy, e.g. at = argmax

a′
Qπ(st , a′;ω)

What if we have continuous action space?
Greedy policy improvement becomes problematic
Requires a global maximisation at every step

Actor-Critic RL
Policy evaluation: Learnt value function, e.g. Qπ(st , at ;ω), i.e. critic
Policy improvement: Learnt policy π(a|st ; θ), i.e. actor
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Actor-Critic RL

Goal: Update parameters θ to maximise J(θ) = Es∼ρπ ,a∼πθ
[R] by

taking steps in the direction of ∇θJ(θ)
Based on policy gradient theorem

Theorem (Policy Gradient Theorem [3])
For any differentiable policy πθ, the policy gradient is

∇θJ(θ) = Es∼ρπ ,a∼πθ

[
∇θ logπθ(a|s)Qπ(s, a)

]
Theorem (Deterministic Policy Gradient Theorem [4])
For any differentiable differentiable policy µθ, the policy gradient is

∇θJ(θ) = Es∼ρπ
[
∇θµθ(s)∇aQ

µ(s, a)|a=µθ(s)

]
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Deep Deterministic Policy Gradient (DDPG) [5]

Adopts DPG
Actor µ and Critic Qµ are approximated with Deep NNs
Similarly to DQN, employs experience replay and target network

1 Take action at = µ(st ; θ) +N t

2 Store transition (st , at , r t , st+1) in replay memory D
3 Sample a random mini-batch of transitions (s, a, r , s ′) ∼ D
4 Update the Critic by minimising the loss

L(ω) = Es,a,r ,s′∼D
[
(Qµ(s, a;ω)−y)2

]
y = r + γmax

a′
Qµ(s ′, a′;ω′)

(2)

5 Update the Actor using the gradient

∇θJ(θ) = Es∼D
[
∇θµ(s; θ)∇aQ

µ(s, a;ω)|a=µ(s;θ)

]
(3)
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The MARL Problem

Partially observable Markov Games (POMGs)
Multi-agent extensions of MDPs of N agents

Definition (POMG [6])
A Partially Observable Markov Game is a tuple
G = 〈S,A, T ,R,Q,O, γ,N〉

S is a finite set of states
A is a collection of sets of actions, A = {A1, . . . ,AN}
T is a state transition function
R is a reward function
Q is a collection of private observation functions Q = {Q1, . . . ,QN}
O is a collection of private observations O = {O1, . . . ,ON}
γ is a discount factor
N is the number of agents
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The MARL Challenges

Partial observability
Agents do not have full access to the true state st

Each agent receives a private partial observation ot
i correlated with st

And chooses an action according to a policy conditioned on its own
private observation, i.e. ati = µ(ot

i ; θi )
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The MARL Challenges

Non-stationarity
Environment moves into the next state st+1 according to actions of all
agents, i.e. st+1 = T (st , at1, . . . , atN)
It is non-stationary from the viewpoint of any agent: when any µi 6= µ′i
P(ot+1

i |ot
i , a

t
i ,µ1, . . . ,µN) 6= P(ot+1

i |ot
i , a

t
i ,µ
′
1, . . . ,µ

′
N)

Credit assignment
Which agent is responsible for the received reward?
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The MARL Challenges

Markov assumption is violated due to PO + NS
Transitions in the experience replay become invalid due to NS
High variance problem exacerbates due to CA
Sample inefficiency exacerbates due to PO + NS + CA

Ozsel Kilinc (WMG) MADRL with Extremely Noisy Obs. WCPM Seminar, 2019 36 / 60



Naive Solutions

Ignore all the problems and train agents independently
Train in decentralised manner, i.e. Qµ

i (oi , ai )
Execute in decentralised manner, i.e. µi (oi )
Over-optimistic

Use all available information and train agents as a single Meta-agent
Train in centralised manner, i.e. Qµ

i (o1, a1, . . . , oN , aN)
Execute in centralised manner, i.e. µi (o1, . . . , oN)
Scalability: input size is multiplied by N for each one of N agents
In a realistic scenario where agents work remotely, (N − 1)N
transmissions are required at each time-step
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Multi-agent DDPG [7]

Train in centralised manner, i.e. Qµ
i (o1, a1, . . . , oN , aN)

Execute in decentralised manner, i.e. µi (oi )
If agents know the actions taken by other agents, the environment is
stationary even when any µi 6= µ′i
P(o ′i |oi , a1, . . . , aN ,µ1, . . . ,µN) = P(o ′i |oi , a1, . . . , aN ,µ

′
1, . . . ,µ

′
N)

During training, agents learn coordinated behaviours
In execution time, each agent acts according to its own learnt
coordinated behaviour without any explicit communication
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Communication-based Approaches

Differentiable Inter-Agent Learning (DIAL) [8]
Sends gradients through the communication channel
1-bit discrete messages
Weight sharing
(N − 1)N transmissions are required
Considers problems that can be solved with yes/no type of
communication
Hard to scale to harder problems as gradients pass between the agents
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Communication-based Approaches

Communication Neural Net (CommNet) [9]
Sends gradients through the communication channel
Communication channel carries the average of the messages of all agents
Weight sharing
Uses a large single network for all the agents, which may not be easily
scalable
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POMG with Extremely Noisy Observations

In regular POMG, each agent receives a private partial observation oti
correlated with st

What if some partial observations are extremely noisy, almost
uncorrelated with st?

Real-life example:
Autonomous driving?

Can existing solutions solve this problem?
DDPG: Over-over-optimistic
MADDPG: Is coordinated behaviour enough?
DIAL: Needs more than yes/no communication.
CommNet: If the majority is noisy, then how good could be the average
of the observations?
Meta-agent: Can it learn to suppress the noisy info?
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Environment: OpenAI Gym’s Original Spread Scenario [7]

N agents need to learn to reach N landmarks while avoiding collisions
with each other
Observations:

Their own positions and velocities
Relative positions of the other N − 1 agents
Relative positions of the N landmarks

Rewards:
Collective reward based on their distance to the landmarks
Additional negative reward if they collide with each other

Actions:
Continuous N, W, S, E
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Environment: Our Modified Spread Scenarios

N agents need to learn to reach N landmarks while avoiding collisions
with each other
Observations:

Their own positions and velocities
Relative positions of the other N − 1 agents
Relative positions of the N landmarks

Rewards:
Collective reward based on their distance to the landmarks
Additional negative reward if they collide with each other

Actions:
Continuous N, W, S, E
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Environment: Our Modified Spread Scenarios
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Agents
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a) Broadcasting (one-to-all)
Any agent can occupy any landmark (as long as it is true)
The gifted agent is able to correctly observe all three landmarks
The other agents receive the wrong landmarks’ locations
This special agent can either remain the same throughout the whole
learning period (fixed) or vary across episodes (alternating), and even
within an episode (dynamic).
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Environment: Our Modified Spread Scenarios
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b) Unicasting (one-to-one)
Each landmark is designated to a particular agent, and the agents get
rewarded only when reaching their allocated landmarks
Each agent can only correctly observe one of the landmarks (either its
own or another agent’s)
Otherwise receives the wrong whereabouts of the remaining ones
Same variations:fixed, alternating, dynamic
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Proposed Approach

Communication is a must
Rather than sharing everything, filtering out the noisy observations may
be advantageous

Resources, e.g. reduced communication cost, scalability
Performance?

Agents with noisy information cannot discriminate between relevant and
noisy information on their own
Agents need to collectively decide which observations should be shared
in the medium
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Proposed Approach: Policies

Each agent has two hierarchically arranged
policies νi and µi

{ν1, . . . ,νN} and {µ1, . . . ,µN} are coupled
through a communication medium {m1, . . . ,mN}

1 Each agent chooses a communication action ci ,
i.e. ci = νi (oi )

2 {c1, . . . , cN} collectively determine the
information shared in {m1, . . . ,mN}

3 Each agent determines its environmental action ai ,
i.e. ai = µi (oi ,mi )
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Proposed Approach: Comm. Actions and the Medium

The communication action of each agent is an
N-dimensional vector, cj ,: ∈ R1×N

cj ,i indicates the j th agent’s willingness to share
its private observation oj with the i th agent
The observation of the agent with the greatest
willingness is shared with i th agent, i.e. assigned
to mi

mi = ok where k = argmax
j

(c1,i , . . . , cj ,i , . . . , cN,i )

Ozsel Kilinc (WMG) MADRL with Extremely Noisy Obs. WCPM Seminar, 2019 49 / 60



Proposed Approach: Training

Problem: ν and µ are coupled and must be
learned concurrently
Use two different levels of temporal abstraction:

Run ν and µ at different frequencies
Use different rewards to learn each policy:

Use cumulative of environment rewards to learn
ν and introduce some notion of auxiliary rewards
to learn µ
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Proposed Approach: Temporal Abstraction

At time t, get c and determine m

Keep c and m fixed for the next C steps, i.e. mt = . . . = mt+C−1

Obtain a for these C steps, {at , at+1, . . . , at+C−1}, exploiting the
information shared at time t
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Proposed Approach: Rewards for Communication

Recall that no explicit feedback for communication strategies
Recall that environmental rewards indicates the distance to true
landmarks
To optimise communication policies ν

Recall that the c and m are fixed for C steps
Cumulative sum of the environmental rewards collected during these
C > 1 steps may be a good feedback, i.e. Ki =

∑t+C
t′=t r

t′

i

C → 1: Is the received feedback due to communication actions or
environmental actions?
C → T : m would be too outdated
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Proposed Approach: Rewards for Actions

Recall that no explicit feedback for communication strategies
Recall that environmental rewards indicates the distance to true
landmarks
To optimise action policies µ

Let’s say we use environmental rewards to learn µ
When communication decisions are wrong, the observed rewards and the
observations/actions will be uncorrelated
Instead, generate medium-dependent rewards, q, to motivate the agents
to move towards the landmarks shared in the medium
Regardless of whether they are the noisy ones or the true ones
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Proposed Approach: Learning

Learning Q-values for communication policies ν, i.e. Qν , using Ki

L(ω
ν,i ) = Eo,c,K ,o′′

[
(Qν

i (o1, c1, . . . , oN , cN)− y)2
]

y = Ki + γQν′

i (o′′1 , c
′′
1 , . . . , o

′′
N , c

′′
N)
∣∣
c′′j =ν′

j (o
′′
j )

Learning ν using Qν

∇θν,i J(νi ) = Eo,c∼Dν
[
∇θν,iνi (oi )∇ciQ

ν
i (o1, c1, . . . , oN , cN)|ci=νi (oi )

]
Learning Q-values for action policies µ, i.e. Qµ, using qi

L(ωµ,i ) = Eo,m,a,q,o′
[
(Qµ

i (oi ,mi , ai )− y)2
]

y = qi + γQµ′

i (o′i ,mi , a
′
i )
∣∣
a′i=µ′

i (o
′
i ,mi )

Learning µ using Qµ

∇θµ,iJ(µi ) = Eo,m,a∼Dµ
[
∇θµ,iµi (oi ,mi )∇aiQ

µ
i (oi ,mi , ai )|ai=µi (oi ,mi )

]
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Empirical Results: Comparison with Baselines

DDPG: Ignore all MA problems and train agents independently
MADDPG: Train in centralised manner, execute in decentralised
manner. Can learn coordinated behaviour without any communication
Meta-Agent: Use all available information, train and execute agents as
a single agent with multiple control points. May be considered as a
form of unlimited communication
DDPG-OC: DDPG with Optimal Communication. Uses hard-coded
optimal communication pattern
MADDPG-M: Hierarchically learnt policies to filter out the noisy
information
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Empirical Results: Comparison with Baselines

DDPG and MADDPG: They both fail to learn the correct behaviour:
Learning coordinated behaviour is not always helpful
DDPG-OC: When m is optimally controlled, all the scenarios can be
accomplished even by DDPG
Meta-agent: Its performance decreases dramatically as the complexity
of our environments increases: Using all available information is not
always the best choice
MADDPG-M: Performs quite similarly to DDPG-OC in all our
environments: Underlying communication scheme as well as the optimal
action policies can be learnt simultaneously by hierarchical training
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Empirical Results: Simultaneous Learning of Policies

In the initial phases of training, the MADDPG-M agents are able to
begin learning the environment dynamics and the expected actions
through the medium-dependent rewards rewards
Improved environmental actions subsequently provide better feedback
yielding improved communications actions, and so on
Ultimately, MADDPG-M agents perform comparably to DDPG-OC
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Conclusions

A MARL problem characterised by partial and extremely noisy
observations
Two instances of this problem: broadcasting and unicasting
The key technical contribution: hierarchical interpretation of the
communication-action dependency
Agents learn two policies that are connected through a communication
medium
Using different levels of temporal abstraction and intrinsically generated
rewards
We have considered scenarios where sharing a single observation at a
time is sufficient to accomplish the task
There might be more complex cases where an agent needs to reach the
observations of multiple agents at the same time
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Questions

Thank you for your attention!
Any questions?
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