

Predictive modelling: a view from the atomic level

P.M. Rodger
Department of Chemistry
& Centre for Scientific Computing
University of Warwick

Acknowledgements

- David Quigley, Igor Khovanov, Matt Bano, Yuriy Bushuev, Aaron Finney,
 Ritchie-Mae Gamot, Yuanwei Xu, Salvatore Cosseddu (Warwick)
- John Harding, Colin Freeman and Riccardo Innocenti Malini (Sheffield)
- Paul Smeets, Heiner Friedrich, Jozua Laven, Nico Sommerdijk
 (Eindhoven), Wouter Habraken (Postdam), Fabio Nudelman (Edinburgh)
- Mike Allen (Warwick), Dorothy Duffy (UCL), Julian Gale (Curtin)
- Warwick CSC
- HECTOR & ARCHER
- MidPlus
- EPSRC (mIb: Materials Interfacing Biology)

Philosophy

- Complex materials
 - > complete model is not possible
- Mechanistic information
 - "predictions" not reliable without the correct underlying physics/chemistry
- Dimensionality
 - > identify key degrees of freedom
 - > target analysis
 - > drive or simplify modelling

Unexpected Mechanisms: old examples

Decay of the Velocity Autocorrelation Function

B. J. Alder and T. E. Wainwright Phys. Rev. A 1, 18 – Published 1 January 1970

 Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events

Arthur F. Voter Phys. Rev. Lett. **78**, 3908 – Published 19 May 1997

Motivation: Biominerals

Nature:

- Exquisite control of crystal morphology & aggregation found in nature
- Leads to very well "designed" functional materials
- Ability to simulate implies ability to guide synthesis

Emiliania huxleyi coccoliths

Henriksen, K., S. L. S. Stipp, et al. American Mineralogist 89, 1709-1716 (2004)

Laboratory:

Reddy, M. M. and A. R. Hoch. Journal of Colloid and Interface Science 235, 365-370 (2001)

Motivation: additives for inhibition

- Often need to suppress crystal growth
 - > Scale, wax, hydrate
- "kinetic" inhibitors
 - > Delay nucleation or slow growth
 - > Active at low concentrations
 - > Require *molecular* understanding of nucleation and growth

Mechanistically inspired prediction?

Inhibition by surface adsorption

validate

screen

sH (1 0 0) / kcal mol⁻¹

new modes?

T2 (1 1 1) / kcal mol⁻¹

Synthesise and test

	$t_{\rm induction} / {}_{\rm S}$	$R_{ m nucl}$ / $(m ml^{-1}~min^{-1})$	$R_{ m growth}$ / ($\mu m m min^{-1}$)
Control	-90	1439	1.56
	(32)	(1031)	(2.18)
tba3S	1705	89	0.61
(0.1 %)	(422)	(–)	(0.23)
tba3S	2678	116	0.86
(0.5 %)	(231)	(13)	(0.25)

THF Hydrate Tests

induction times for 0.5% mixtures of tba3S (the "quat", or Q) and PVP (P). The Control contains no inhibitor. Bars indicate ± one standard deviation

Ethane Hydrate Tests

Induction times, nucleation rates (R_{nucl}) and growth rates (R_{growth}). Standard deviations are given in parentheses

2nd generation

Test	KI	Gas	Test P/T	Subcooling	Induction
No.			psia/C	/C	Time/ hrs
1	JI-C003:1	NG	1023 / 5.3	10.7	5
2	JI-C003:1	NG	1023 / 5.3	10.7	>67
3	JI-C003:1	NG	1015 / 5	11	>67
4	JI-C003:1	NG	1023 / 5	11	>150
5	JI-C003:1	Methane	1700 / 4.5	10	>150
	Commercial	NG		10	16
	Commercial	Methane		10	5
6	JI-C002:1	NG	1095 / 4.5	12.3	3
7	JI-C002:1	NG	1095 / 4	12.8	40
8	JI-C002:1	NG	1095 / 5	11.8	>42

• 2nd generation inhibitors perform about 4 times better than current commercial inhibitor

But!

- Experiments not repeatable!
 - > Oil companies can't repeat each other's screens
 - Heriot-Watt: activity changed with test-cell stirrer design
 - > Scale of activity with new compound by test-site
 - Heriot-Watt > Toulouse > Halliburton > Heriot-Watt
- Similar story with wax inhibition (model oil using well characterised edible oil mixture)
- Experimentalists working with nanotoxicology want legislative standards based on computational tests because experiments are too irreproducible!
- Simplistic model: dynamic interface; nucleation; ...

Nucleation from MD?

- Homogeneous nucleation?
 - ➤ Experimental nucleation rates < O(10⁶) nuclei per cm³ per second
 - ➤ MD simulation 10,000 molecules:
 - 1 nucleation event every 32 millenia!
- Heterogeneous nucleation?
 - (some) success with seeding
 - > (some) success with interfaces

Standard MD: modelling surfaces

Deposition of wax on Fe₂O₃

 $ightharpoonup C_{28}$ from C_7

Standard MD: crystal nucleation

 heterogeneous and/or high supersaturation/subcooling

Polydispersity in inhibitors

- molecular weight
 - > amount of hydrate present
 - > PVP

- molecular shape
 - growth of hydrate clusters
 - > pDMAEMA

Nucleation more generally

- Project onto "important" manifold
 - Define key dimensions (order parameters / reaction coordinates / collective variables)
 - ➤ Project analysis onto these dimensions
 - Bias simulations to explore these dimensions
 - constrain to portion of manifold (umbrella sampling)
 - trap fluctuations that explore the manifold (adaptive bias force)
 - disfavour current portion of manifold (Wang-Landau; metadynamics)

⇒ Free energy hypersurfaces

3-basin model Quigley, PMR

KcsN ion channel Cosseddu, PMR, Khovanov

peptide folding Bussi, ..., Parrinello

Limitations and Pitfalls: dimensionality!

- Equilibrium / comprehensive sampling
 - ➤ Typically 1–2D
 (≤ 6; can do ~100 for basin escape & rough sampling)
 - projection merges basins

- Adiabatic Surfaces
 - dynamics defined by metastable substates?

Nucleation with metadynamics: ice

- 4D bias:
 - > Q4, Q6, ς and potential energy (simaltaneous)
- NPT simulation
 - > density change is spontaneous
- *T* = 180 K; *ca.* 11 "ns" simulation
- Results independent of periodic boundaries

An ensemble of critical nuclei

N = 147

N = 138

N = 157

N = 161

Nucleation with metadynamics: CaCO₃

- 6 order parameters
 - $\triangleright Q_{\perp}$ for: Ca-Ca, Ca-C, Ca-O, C-C, C-O
 - measures orientations of X about Y
 - energy associated with CaCO₃
- ca. 10 ns of MD

Exploring configurations for 75 units (water not shown)

Calcium Carbonate Biominerals

- Multi-stage hierarchical formation
- οργανιχ 🛮 χοντρολ

Early stages of carbonate biomineralisation

ions & ion pairs \rightarrow hACC \rightarrow ACC \rightarrow crystalline

hACC: hydrated amorphous calcium cabonate composition *ca.* CaCO₃.H₂O

ACC: (anhydrous) amorphous calcium carbonate

Crystalline: calcite, aragonite, vaterite

Free energy maps: 75 CaCO₃ units

- NVT
- favours amorphous

DQ and PMR, J. Chem. Phys. 128 (2008) 221101

Free energy maps: 75 CaCO₃ units

- NPT
- Dominated by calcite
 - ➤ very low barrier (10–20 kT)

300 CaCO₃ Units in water

- two stable states
- calcite (dominant)
- amorphous
- energy barrier > 10² kT
- multiple transitions

Biomineralisation: egg shells

Structure of an eggshell

Biomacromolecules, Vol. 7, No. 11, 2006 3203 Lakshminarayanan et al.

Juan Pablo Reyes-Grajeda‡§, Abel Moreno‡, and Antonio Romero¶ The Journal of Biological Chemistry

G-type lectin-type proteins

- found in
 - > Rhea
 - > Duck
 - > Chicken
 - > Emu
 - > Ostrich

Ovocleidin-17

Reyes-Grajeda, Moreno, Romero; J. Biol. Chem., 2004

metaDynamics of OC17 + CaCO₃

- 192 & 300 unit nanoparticles
 - > 22,000 water molecules
- 20 different protein/nanoparticle orientations
- Select "best" 4 for long meta-dynamics
- Potentials: due to Freeman et al.
 - Pavese CaCO₃; Amber protein; Tip3p water;
 - > cross terms derived from crystals with scaled charges

Free energy landscapes

192 units of CaCO₃ in water

 192 units of CaCO₃ bound to Ovocleidin-17 in water

Larger nonaparticles?

- 300 CaCO₃ unit particles don't stay bound on crystallisation
- Mechanism for proteins
 - ➤ Bind to small nanoparticles
 - > Facilitate transformation to calcite
 - Desorb as crystal grows
- Gives catalytic cycle for polycrystalline mamillary layer

OC17: catalytic cycle?

Surface binding & structured water

- Binding is seen to planar surfaces
 - Structured water dominates adsorption energy on large crystalline surfaces
 - ➤ Calcite nanoparticles and ACC do not give structured water layer; leads to "flat" adsorption

Also seen with AuBP1 on gold

hACC nulcleation

- Problem
 - > intermolecular potentials
- Controversy

Aragonite?

needs a better potential (Gale & co workers)

Pavese, Catti, Parker, Wall, *Phys Chem. Miner.* , 1996

Raiteri, Gale, Quigley, Rodger, *J. Phys. Chem. C*, 2010

Structure of hACC

- create with several protocols
 - > melt monohydrocalcite; melt and dehydrate ikaite; anneal random distribution ...
- Good agreement with expt structure factor

Water in hACC

zones of stability for hACC

carbonate-mediated H-bond networks

Percolating water clusters

- Universal scaling behaviour
- percolation threshold $\sim n = 0.9$
- underlying hexagonal lattice

correlated water dynamics

correlated large hops along chains of water

Classical nucleation

- Activated process:
 - > Favourable "bulk" energy
 - ➤ Unfavourable interfacial energy
 - > Critical "cluster" size

Classical Nucleation Theory

$$\Delta G = \frac{4}{3}\pi\rho\Delta\mu r^3 + 4\pi\gamma r^2$$

Fundamentally Stochastic

hACC nucleation: classical?

 $\Delta_R G$

Ca2+ CO,2

pre-nucleation clusters Gebauer et al., Science 2008

DOLLOP, Raiteri et al., Nature Comms, 2011

Wallace et al., Science, 2014

~AG*

solid CaCO,

metastable clusters

stable clusters

Nature of the clusters?

- spontaneous clusters dominate?
- Random Structure searches
 - random arrangement of ions; minimise; repeat
- Intelligent Water Drop algorithm
 - > nature-inspired global optimsation
 - > erosion of soil to define river valleys
 - > applications to binary LJ mixtures and Janus particles
 - (not yet carbonates)

Random Structure Searches

- random arrangement of ions within sphere
- Conjugate Gradient optimisation
- ~10,000 initial structures for each cluster size (1–40 formula units)

- variety of cluster properties
 - e.g. energy vs radius of gyration

Energetics of solvated clusters

Free energy Landscape

Long timescale MD: 20-50 mM

"slow" dissolution: convergence from dispersion or initial clusters

dissolution slows with cluster size (concentration)

(requires free energy barrier)

Long timescale MD: ca. 0.5 M

stable "DOLLOP" behaviour; large clusters

And higher concentrations: 0.5–1.5 M

0.57 M stable clusters DOLLOP

1.1 M infinite, liquid like (phase transition?)

Conclusions

- Source of new mechanistic insight
 - kinetic inhibition; eggshell proteins
 - does your predictive model have the right features?
- Can capture some elements of intrinsic complexity
 - > inhibitor polydispersity; nanoparticle structure
 - > need for intelligent sampling
- Progress through data dimensionality reduction
 - > excellent methods for a handful of dimensions
 - > need to identify key dimensions
 - need to recognise and avoid pitfalls of too few (or wrong) dimensions