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Outline Background Modelling Approach Results Outlook

Talk Outline

▶ Motivation: why are we interested?
▶ Modelling approach: how can we treat

these systems?
▶ Statistical physics.
▶ Density functional theory (DFT).

▶ Results: what has been achieved so far?
▶ High-entropy alloys (HEAs).
▶ Magnetic systems.

▶ Outlook: where are we going?
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Motivation: Why Multicomponent Alloys?

▶ Steels, e.g. prototypical austenitic stainless
steel, Fe70Cr20Ni10.

▶ High Entropy Alloys (HEAs), e.g.
CrMnFeCoNi, CrCoNi, NbMoTaW.

▶ Extension to general high-entropy materials:
▶ High-Entropy Oxides, e.g.

(MgNiCuCoZn)0.2O.
▶ High-Entropy Carbides, e.g.

(VNbMoTaW)0.2C.
▶ ‘High Entropy Magnets’,

e.g. SmCo5 → Sm(FeCoNi)5.
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Outline Background Modelling Approach Results Outlook

Focus on High-Entropy Alloys

▶ Vast space of potential compositions.

▶ Exceptional physical properties for applications,
e.g. radiation resistance, soft magnetic
properties, superconductivity.

▶ Solid solution stabilised by large “entropy of
mixing”

−TS = −kBT
∑
α

cα log cα. (1)

▶ At what temperature will order emerge? What
is the nature of order? Short-range?
Long-range? Effect on materials properties?
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Outline Background Modelling Approach Results Outlook

Challenge for Modellers

▶ Space of possible atomic configurations is vast. Challenges
conventional, supercell-based techniques.

▶ For alloys containing magnetic elements, e.g. CrCoNi, how
should magnetism be treated?

▶ Would like a computationally efficient modelling approach to
assess phase stability. Can we do forward modelling?
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Outline Background Modelling Approach Results Outlook

Describing Atomic Configurations

▶ On lattice, specify configuration by {ξiα}.
▶ Interested in the average value of these, i.e.

partial occupancies:

ciα := ⟨ξiα⟩.

▶ Above order-disorder transition temperature,
these are homogeneous:

lim
T→∞

ciα = cα.
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Outline Background Modelling Approach Results Outlook

Switch to Site-Wise Concentrations

▶ Represent high-T , disordered state with homogeneous
site-occupancies:

ξiα ⇝ ciα ⇝ cα.
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Outline Background Modelling Approach Results Outlook

Describe Fluctuations Using Concentration Waves

▶ Express inhomogeneous system as perturbation to
homogeneous one:

ciα = cα +∆ciα. (2)

▶ Write perturbations in reciprocal space:

ciα = cα + ηα
1
2

(
e iq·Ri + e−iq·Ri

)
, q =

(
1
2 ,

1
2

)
. (3)
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Outline Background Modelling Approach Results Outlook

Free Energy

▶ Grand potential:
F = −TS−µN+U

▶ In our case,

F = −β−1
∑
iα

ciα log ciα−
∑′

iα

νiαciα+⟨Ωel⟩0[{ciα}]

▶ Assess energetic cost of perturbations to homogeneous
reference state.
▶ Infer both short-range order and phase stability.
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Landau Series Expansion

▶ For perturbation ciα = cα +∆ciα, want to know ∆F

▶ Series expansion:

F [{ciα}] = F [{cα}] +
∑
iα

∂F

∂ciα

∣∣∣∣
{cα}

∆ciα

+
1

2

∑
iα
jα′

∂2F

∂ciα∂cjα′

∣∣∣∣
{cα}

∆ciα∆cjα′ + . . .
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Outline Background Modelling Approach Results Outlook

Chemical Stability Matrix

▶ Write change in F to second order as:

∆F =
1

2

∑
iα
jα′

∂2F

∂ciα∂cjα′

∣∣∣∣
{cα}

∆ciα∆cjα′

▶ Or, in reciprocal space:

∆F =
1

2

∑
k

∑
αα′

∆cα(k)
[
βΨ−1

αα′(k)
]
∆c ′α(k) (4)
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Outline Background Modelling Approach Results Outlook

Evaluating Free Energy and its derivatives

▶ Recall that free energy has three terms:

F = −β−1
∑
iα

ciα log ciα−
∑′

iα

νiαciα+⟨Ωel⟩0[{ciα}]

▶ Evaluation of first two (and derivatives) trivial.
▶ Third term more tricky.

▶ Can evaluate ⟨Ωel⟩0[{cα}] within KKR formulation of DFT,
using CPA to average over disorder.

Christopher D. Woodgate Warwick
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Outline Background Modelling Approach Results Outlook

Evaluating Free Energy and its derivatives

▶ Evaluating derivatives of DFT energy is non-trivial1.

▶ End result is quantity:

S
(2)
iα; jα′ ≡

∂2⟨Ωel⟩0
∂ciα∂cjα′

⇝ Ψ−1
αα′(q)

1Khan, Staunton, Stocks, Phys. Rev. B 93 054206 (2016)
Christopher D. Woodgate Warwick
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Outline Background Modelling Approach Results Outlook

Recover a simple, pairwise model (‘interatomic potential’)

▶ Bragg-Williams Hamiltonian for atomistic
modelling:

H({ξiα}) =
1

2

∑
iα
jα′

Viα; jα′ ξiαξjβ

▶ If H as above, Viα; jα′ = −S
(2)
iα; jα′ exactly.

▶ Study phase behaviour using, e.g. Monte
Carlo simulations.
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Outline Background Modelling Approach Results Outlook

Workflow Summary

Convenient
Description of System

Configuration,

(Approximate)
Expression for Free

Energy,

Landau-type linear
response analysis

Infer chemical
orderings directly

Obtain parameters for
atomistic simulations

Study phase
behaviour in detail
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Outline Background Modelling Approach Results Outlook

Refractory High-Entropy Alloys: Background

▶ First synthesised by Senkov around 2010.

▶ Excellent high-temperature performance, good radiation
resistance.

▶ Previous studies of phase behaviour suggest interesting
incipient ordering.

2Woodgate, Staunton, Phys. Rev. Mater. 7 013801 (2023)
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Outline Background Modelling Approach Results Outlook

Refractory HEAs: Chemical Stability Matrices
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Outline Background Modelling Approach Results Outlook

Refractory HEAs: Atomistic Modelling
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▶ NbMoTaW: predicted single-phase Heusler-like ground state2.
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Outline Background Modelling Approach Results Outlook

Cantor Alloy & its Derivatives: Background

▶ First synthesised by Cantor around 2004.

▶ Prototypical fcc high-entropy alloys.

▶ Experimentally observed atomic short-range order.

3Woodgate, Staunton, Phys. Rev. B 105 115124 (2022). (Editors’ Suggestion.)
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Outline Background Modelling Approach Results Outlook

Cantor Alloy & its Derivatives: Chemical Stability Matrices
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Outline Background Modelling Approach Results Outlook

Cantor Alloy & its Derivatives: Atomistic Modelling
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Outline Background Modelling Approach Results Outlook

Importance of the Magnetic State
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▶ Different magnetic state results in different orderings4.

4Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. 7 053801 (2023)
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Outline Background Modelling Approach Results Outlook

Impact of atomic arrangements on magnetic properties
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▶ Atomic ordering affects magnetostriction5.

5Marchant, Woodgate, Patrick, Staunton, Phys. Rev. B 103, 094414 (2021)
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Outline Background Modelling Approach Results Outlook

Impact of atomic arrangements on magnetic properties
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▶ Atomic ordering affects magnetic anisotropy6,7.

6Woodgate, Patrick, Lewis, Staunton, arXiv:2307.15470.
7Woodgate, Patrick, Lewis, Staunton, in preparation.
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Outline Background Modelling Approach Results Outlook

Feeding into Other Simulation Techniques

▶ Can use physically motivated configurations in training data
for machine-learned interatomic potentials8.

5Shenoy, Woodgate, et al., arXiv:2309.08689.
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Outline Background Modelling Approach Results Outlook

Next Steps and Future Work

▶ Approach is highly computationally efficient. Materials
discovery?

▶ Feed into more sophisticated techniques, could we model
impact of short-range order on physical properties of HEAs?.

▶ Broaden approach to modelling general high-entropy oxides,
carbides, etc.?.
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Outline Background Modelling Approach Results Outlook

Take-Home Messages

Novel Approach For Modelling Atomic Arrangements in Alloys

Computationally efficient, DFT-based methodology predicts
ordering and gives physical insight.

Can Study Impact on Materials Properties

Examples where atomic ordering impacts materials’ magnetic
properties.

Interface with other techniques

Use physically motivated configurations in subsequent studies using
other modelling techniques.
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▶ George A. Marchant

▶ Julie B. Staunton

Northeastern University, USA

▶ Laura H. Lewis

▶ Daniel Hedlund

University of Oxford, UK

▶ Christopher E. Patrick

Christopher D. Woodgate Warwick

Modelling Atomic Arrangements in Multicomponent Alloys 28 of 28


	Outline
	Background
	Modelling Approach
	Results
	Outlook

