Modelling Approach

Results

Outlook 000

Modelling Atomic Arrangements in Multicomponent Alloys: A First-Principles-Based Approach

Christopher D. Woodgate

University of Warwick, Coventry, UK

Bristol Quantum Matter Seminar, 20th October 2023

Christopher D. Woodgate

Modelling Atomic Arrangements in Multicomponent Alloys

Warwick

Modelling Approach

Talk Outline

Christopher D. Woodgate	
Modelling Atomic Arrangements in Multicomponent Alloys	

VA/americal.	
VVal WICK	

Motivation: why are we interested?

Christopher D. Woodgate
Modelling Atomic Arrangements in Multicomponent Alloys

W	an	MIC	٠k
	u ,	wie,	~

Outline

- Motivation: why are we interested?
- Modelling approach: how can we treat these systems?
 - Statistical physics.
 - Density functional theory (DFT).

- Motivation: why are we interested?
- Modelling approach: how can we treat these systems?
 - Statistical physics.
 - Density functional theory (DFT).
- Results: what has been achieved so far?
 - High-entropy alloys (HEAs).
 - Magnetic systems.

- Motivation: why are we interested?
- Modelling approach: how can we treat these systems?
 - Statistical physics.
 - Density functional theory (DFT).
- Results: what has been achieved so far?
 - High-entropy alloys (HEAs).
 - Magnetic systems.
- Outlook: where are we going?

Outline	Background	Modelling Approach	Results	Outlook
0	●00		000000000	000

Outline	Background	Modelling Approach	Results	Outlook
0	●00	000000000	000000000	000

 Steels, *e.g.* prototypical austenitic stainless steel, Fe₇₀Cr₂₀Ni₁₀.

Outline	Background	Modelling Approach	Results	Outlook
O	●00		000000000	000

- Steels, *e.g.* prototypical austenitic stainless steel, Fe₇₀Cr₂₀Ni₁₀.
- High Entropy Alloys (HEAs), e.g. CrMnFeCoNi, CrCoNi, NbMoTaW.

Outline	Background	Modelling Approach	Results	Outlook
0	●00	000000000	000000000	000

- Steels, e.g. prototypical austenitic stainless steel, Fe₇₀Cr₂₀Ni₁₀.
- High Entropy Alloys (HEAs), e.g. CrMnFeCoNi, CrCoNi, NbMoTaW.
- Extension to general high-entropy materials:

Outline	Background	Modelling Approach	Results	Outlook
0	●00	000000000	000000000	000

- Steels, e.g. prototypical austenitic stainless steel, Fe₇₀Cr₂₀Ni₁₀.
- High Entropy Alloys (HEAs), e.g. CrMnFeCoNi, CrCoNi, NbMoTaW.
- Extension to general high-entropy materials:
 - High-Entropy Oxides, e.g. (MgNiCuCoZn)_{0.2}O.

Outline	Background	Modelling Approach	Results	Outlook
0	●00		000000000	000

- Steels, e.g. prototypical austenitic stainless steel, Fe₇₀Cr₂₀Ni₁₀.
- High Entropy Alloys (HEAs), e.g. CrMnFeCoNi, CrCoNi, NbMoTaW.
- Extension to general high-entropy materials:
 - High-Entropy Oxides, e.g. (MgNiCuCoZn)_{0.2}O.
 - High-Entropy Carbides, e.g. (VNbMoTaW)_{0.2}C.

Outline	Background	Modelling Approach	Results	Outloc
0	●00		000000000	000

- Steels, e.g. prototypical austenitic stainless steel, Fe₇₀Cr₂₀Ni₁₀.
- High Entropy Alloys (HEAs), e.g. CrMnFeCoNi, CrCoNi, NbMoTaW.
- Extension to general high-entropy materials:
 - High-Entropy Oxides, e.g. (MgNiCuCoZn)_{0.2}O.
 - High-Entropy Carbides, e.g. (VNbMoTaW)_{0.2}C.
 - 'High Entropy Magnets', e.g. SmCo₅ → Sm(FeCoNi)₅.

Background 0●0

Modelling Approach 000000000 Results 000000000 Outlook 000

Focus on High-Entropy Alloys

Christopher D. Woodgate	
Modelling Atomic Arrangements in	Multicomponent Alloys

Warwick

Modelling Approact

Focus on High-Entropy Alloys

► *Vast* space of potential compositions.

Focus on High-Entropy Alloys

- Vast space of potential compositions.
- Exceptional physical properties for applications, e.g. radiation resistance, soft magnetic properties, superconductivity.

Focus on High-Entropy Alloys

- Vast space of potential compositions.
- Exceptional physical properties for applications, e.g. radiation resistance, soft magnetic properties, superconductivity.
- Solid solution stabilised by large "entropy of mixing"

$$-TS = -k_B T \sum_{\alpha} c_{\alpha} \log c_{\alpha}.$$
 (1)

Focus on High-Entropy Alloys

- Vast space of potential compositions.
- Exceptional physical properties for applications, e.g. radiation resistance, soft magnetic properties, superconductivity.
- Solid solution stabilised by large "entropy of mixing"

$$-TS = -k_B T \sum_{\alpha} c_{\alpha} \log c_{\alpha}.$$
(1)

At what temperature will order emerge? What is the nature of order? Short-range? Long-range? Effect on materials properties?

Christopher D. Woodgate	
Modelling Atomic Arrangements in Multicomponent	Alloys

Warwick	
5 of 28	

Space of possible atomic configurations is vast. Challenges conventional, supercell-based techniques.

- Space of possible atomic configurations is vast. Challenges conventional, supercell-based techniques.
- For alloys containing magnetic elements, e.g. CrCoNi, how should magnetism be treated?

- Space of possible atomic configurations is vast. Challenges conventional, supercell-based techniques.
- For alloys containing magnetic elements, e.g. CrCoNi, how should magnetism be treated?

Would like a computationally efficient modelling approach to assess phase stability. Can we do forward modelling?

Christopher D. Woodgate	
Modelling Atomic Arrangements in Multicomponent Alloys	

Modelling Approach

Results 000000000

Describing Atomic Configurations

Christopher D. Woodgate	
Modelling Atomic Arrangements in Multicomponent Alloys	

\$757	25	 <u></u>
		 .

Describing Atomic Configurations

• On lattice, specify configuration by $\{\xi_{i\alpha}\}$.

Describing Atomic Configurations

- On lattice, specify configuration by $\{\xi_{i\alpha}\}$.
- Interested in the average value of these, i.e. partial occupancies:

$$c_{i\alpha} := \langle \xi_{i\alpha} \rangle.$$

С)
\bigcirc	

Christopher D. Woodgate
Modelling Atomic Arrangements in Multicomponent Alloys

Describing Atomic Configurations

- On lattice, specify configuration by $\{\xi_{i\alpha}\}$.
- Interested in the average value of these, i.e. partial occupancies:

$$c_{i\alpha} := \langle \xi_{i\alpha} \rangle.$$

Above order-disorder transition temperature, these are *homogeneous*:

$$\lim_{T\to\infty}c_{i\alpha}=c_{\alpha}.$$

Christopher D. Woodgate

Modelling Atomic Arrangements in Multicomponent Alloys

Wa	arw	ick
6	of	28

Modelling Approach

Results 000000000

Switch to Site-Wise Concentrations

Switch to Site-Wise Concentrations

Represent high-T, disordered state with homogeneous site-occupancies:

 $\xi_{i\alpha} \rightsquigarrow c_{i\alpha} \rightsquigarrow c_{\alpha}.$

Christopher D. Woodgate	
Modelling Atomic Arrangements in Multicomponent Alloys	

Switch to Site-Wise Concentrations

Represent high-T, disordered state with homogeneous site-occupancies:

 $\xi_{i\alpha} \rightsquigarrow c_{i\alpha} \rightsquigarrow c_{\alpha}.$

Outline	Background	Modelling Approach	Results	Outlook
0	000	00●0000000	000000000	000

Express inhomogeneous system as perturbation to homogeneous one:

$$c_{i\alpha} = c_{\alpha} + \Delta c_{i\alpha}.$$
 (2)

Outline	Background	Modelling Approach	Results	Outlook
0	000	00●0000000	000000000	000

Express inhomogeneous system as perturbation to homogeneous one:

$$c_{i\alpha} = c_{\alpha} + \Delta c_{i\alpha}.$$
 (2)

Write perturbations in reciprocal space:

$$c_{i\alpha} = c_{\alpha} + \eta_{\alpha} \frac{1}{2} \left(e^{i\mathbf{q}\cdot\mathbf{R}_{i}} + e^{-i\mathbf{q}\cdot\mathbf{R}_{i}} \right), \quad \mathbf{q} = \left(\frac{1}{2}, \frac{1}{2} \right). \quad (3)$$

Outline	Background	Modelling Approach	Results	Outlook
0	000	00●0000000	000000000	000

Express inhomogeneous system as perturbation to homogeneous one:

$$c_{i\alpha} = c_{\alpha} + \Delta c_{i\alpha}.$$
 (2)

Write perturbations in reciprocal space:

$$c_{i\alpha} = c_{\alpha} + \eta_{\alpha} \frac{1}{2} \left(e^{i\mathbf{q}\cdot\mathbf{R}_{i}} + e^{-i\mathbf{q}\cdot\mathbf{R}_{i}} \right), \quad \mathbf{q} = \left(\frac{1}{2}, \frac{1}{2} \right). \quad (3)$$

0000000 0000000 0000000 \bigcirc \circ ()0000000 0000000 $\mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O}$

Modelling Atomic Arrangements in Multicomponent Alloys

Free Energy

Christopher D. Woodgate	
Modelling Atomic Arrangements in Multicomponent A	lloys

v	٧a	rw	ick	
	0	of	20	

Outline 0	Background 000	Modelling Approach 000●000000	Results 000000000	Outlook 000
Free Ene ► G	rgy rand potential:			
	-	$F = -TS - \mu N + U$		

Outline 0	Background 000	Modelling Approach	Results 000000000	Outlook 000
Free Ene	ergy			
► G	rand potential:			
	·	$F = -TS - \mu N + U$	J	
		, · · ·		
► In	our case,			
	$F = -\beta^{-1} \sum_{i\alpha}$	$\sum c_{i\alpha} \log c_{i\alpha} - \sum_{i\alpha}' \nu_{i\alpha}$	$c_{i\alpha} + \langle \Omega_{el} \rangle_{0} [\{c_{i\alpha}\}]$	
	74	i a		
Outline 0	Background 000	Modelling Approach 000●000000	Results 000000000	Outlook 000
--------------	---	--	--	----------------
Free Ene	rgy			
🕨 Gi	and potential:			
		$F = -TS - \mu N + U$		
► In	our case,			
	$F = -\beta^{-1} \sum_{i\alpha} e^{-\beta i\alpha}$	$c_{i\alpha}\log c_{i\alpha} - \sum_{i\alpha}' \nu_{i\alpha}c_{i\alpha}$	$+\langle \Omega_{el} \rangle_0 [\{c_{i\alpha}\}]$	
As re	ssess energetic cost ference state.	t of perturbations to h	omogeneous	
	Infer both short-r	ange order and phase st	ability.	
]	

Modelling Approach

Landau Series Expansion

Christopher D. Woodgate		
Modelling Atomic Arrangements in	Multicomponent	Alloys

VV	arw	IC	<

10 of 28

Landau Series Expansion

• For perturbation $c_{i\alpha} = c_{\alpha} + \Delta c_{i\alpha}$, want to know ΔF

Christopher D. Woodgate	
Modelling Atomic Arrangements in Multicomponent Alloys	

Landau Series Expansion

- For perturbation $c_{i\alpha} = c_{\alpha} + \Delta c_{i\alpha}$, want to know ΔF
- Series expansion:

$$F[\{c_{i\alpha}\}] = F[\{c_{\alpha}\}] + \sum_{i\alpha} \frac{\partial F}{\partial c_{i\alpha}} \Big|_{\{c_{\alpha}\}} \Delta c_{i\alpha} + \frac{1}{2} \sum_{\substack{i\alpha \\ j\alpha'}} \frac{\partial^2 F}{\partial c_{i\alpha} \partial c_{j\alpha'}} \Big|_{\{c_{\alpha}\}} \Delta c_{i\alpha} \Delta c_{j\alpha'} + \dots$$

Christopher D. Woodgate	Warwick
Modelling Atomic Arrangements in Multicomponent Alloys	10 of 28

Modelling Approach

Results 000000000 Outlook 000

Chemical Stability Matrix

\sim		I		A /		
L	nristop	ner	D. V	/V(boc	gate
						o

Warwick

Outline	Background	Modelling Approach	Results	Outlook
0	000	00000●0000	000000000	000

Chemical Stability Matrix

▶ Write change in *F* to second order as:

$$\Delta F = \frac{1}{2} \sum_{\substack{i\alpha \\ j\alpha'}} \frac{\partial^2 F}{\partial c_{i\alpha} \partial c_{j\alpha'}} \bigg|_{\{c_\alpha\}} \Delta c_{i\alpha} \Delta c_{j\alpha'}$$

Christopher D.	Woodgate
----------------	----------

Warwick

Outline	Background	Modelling Approach	Results	Outlook
0	000	00000●0000	000000000	000

Chemical Stability Matrix

▶ Write change in *F* to second order as:

$$\Delta F = \frac{1}{2} \sum_{\substack{i\alpha \\ j\alpha'}} \frac{\partial^2 F}{\partial c_{i\alpha} \partial c_{j\alpha'}} \bigg|_{\{c_\alpha\}} \Delta c_{i\alpha} \Delta c_{j\alpha'}$$

Or, in reciprocal space:

 $\Delta F = \frac{1}{2} \sum_{\mathbf{k}} \sum_{\alpha \alpha'} \Delta c_{\alpha}(\mathbf{k}) \left[\beta \Psi_{\alpha \alpha'}^{-1}(\mathbf{k}) \right] \Delta c_{\alpha}'(\mathbf{k})$ (4)

Christopher D. Woodgate

Warwick

Recall that free energy has three terms:

$$F = -\beta^{-1} \sum_{i\alpha} c_{i\alpha} \log c_{i\alpha} - \sum_{i\alpha}' \nu_{i\alpha} c_{i\alpha} + \langle \Omega_{el} \rangle_0 [\{c_{i\alpha}\}]$$

Recall that free energy has three terms:

$$F = -\beta^{-1} \sum_{i\alpha} c_{i\alpha} \log c_{i\alpha} - \sum_{i\alpha}' \nu_{i\alpha} c_{i\alpha} + \langle \Omega_{el} \rangle_0 [\{c_{i\alpha}\}]$$

Third term more tricky.

Recall that free energy has three terms:

$$F = -\beta^{-1} \sum_{i\alpha} c_{i\alpha} \log c_{i\alpha} - \sum_{i\alpha}' \nu_{i\alpha} c_{i\alpha} + \langle \Omega_{el} \rangle_0 [\{c_{i\alpha}\}]$$

Evaluation of first two (and derivatives) trivial.

Third term more tricky.

 Can evaluate (Ω_{el})₀[{c_α}] within KKR formulation of DFT, using CPA to average over disorder.

Christopher D. Woodgate

¹Khan, Staunton, Stocks, Phys. Rev. B **93** 054206 (2016)

 Christopher D. Woodgate
 Warwick

 Modelling Atomic Arrangements in Multicomponent Alloys
 13 of 28

Evaluating derivatives of DFT energy is non-trivial¹.

¹Khan, Staunton, Stocks, Phys. Rev. B **93** 054206 (2016)

 Christopher D. Woodgate
 Warwick

 Modelling Atomic Arrangements in Multicomponent Alloys
 13 of 28

Modelling Approach

Evaluating Free Energy and its derivatives

Evaluating derivatives of DFT energy is non-trivial¹.

VOLUME 50, NUMBER 5

PHYSICAL REVIEW LETTERS

31 JANUARY 1983

Concentration Waves and Fermi Surfaces in Random Metallic Alloys

B. L. Gyorffy

Oak Ridge National Laboratory, Oak Ridge. Tennessee 37830, and H. H. Wills Physics Laboratory, University of Bristol, United Kingdom

and

G. M. Stocks

Science and Engineering Research Council, Davesbury Laboratory, Davesbury, Warrington WA44AD, United Kingdom, and Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (Received 18 June 1982)

On the basis of a new first-principles, electronic model for the forces driving clustering and short-range order in metallic alloys, it is argued that observed concentration-dependent peaks in the x-ray and electron diffuse scattering intensities are due to parallel sheets of flat Fermi surface. The positions of the peaks are directly related to the spanning vector \hat{k}_{μ} .

PACS numbers: 71.25.Mg, 71.10.*x, 71.25.Hc

¹Khan, Staunton, Stocks, Phys. Rev. B **93** 054206 (2016)

Christopher D. Woodgate

Modelling Atomic Arrangements in Multicomponent Alloys

Warwick

Modelling Approach

Evaluating Free Energy and its derivatives

Evaluating derivatives of DFT energy is non-trivial¹.

VOLUME 50, NUMBER 5

PHYSICAL REVIEW LETTERS

31 JANUARY 1983

Concentration Waves and Fermi Surfaces in Random Metallic Alloys

B. L. Gyorffy Oak Ridge National Laboratory, Oak Ridge. Temessee 37830, and H. H. Wills Physics Laboratory, University of Bristol, United Kingdom

and

G. M. Stocks

Science and Engineering Research Council, Davesbury Laboratory, Davesbury, Warrington WA44AD, United Kingdom, and Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (Received 18 June 1982)

On the basis of a new first-principles, electronic model for the forces driving clustering and short-range order in metallic alloys, it is argued that observed concentration-dependent pasks in the x-ray and electron diffuse scattering intensities are due to parallel sheets of flat Fermi surface. The positions of the peaks are directly related to the spanning vector \hat{k}_p .

PACS numbers: 71.25.Mg, 71.10.+x, 71.25.Hc

End result is quantity:

$$S_{i\alpha;j\alpha'}^{(2)} \equiv rac{\partial^2 \langle \Omega_{\mathsf{el}}
angle_0}{\partial c_{i\alpha} \partial c_{j\alpha'}} \rightsquigarrow \Psi_{\alpha\alpha'}^{-1}(\mathbf{q})$$

¹Khan, Staunton, Stocks, Phys. Rev. B **93** 054206 (2016)

Christopher D. Woodgate

Modelling Atomic Arrangements in Multicomponent Alloys

Warwick 13 of 28

Christopher D. Woodgate	Warwick
Modelling Atomic Arrangements in Multicomponent Alloys	14 of 28

 Bragg-Williams Hamiltonian for atomistic modelling:

$$H(\{\xi_{i\alpha}\}) = \frac{1}{2} \sum_{\substack{i\alpha\\j\alpha'}} V_{i\alpha;j\alpha'} \,\xi_{i\alpha}\xi_{j\beta}$$

Christopher D. Woodgate	Warwick
Modelling Atomic Arrangements in Multicomponent Alloys	14 of 28

 Bragg-Williams Hamiltonian for atomistic modelling:

$$H(\{\xi_{i\alpha}\}) = \frac{1}{2} \sum_{\substack{i\alpha\\j\alpha'}} V_{i\alpha;j\alpha'} \xi_{i\alpha} \xi_{j\beta}$$

If *H* as above,
$$V_{i\alpha;j\alpha'} = -S^{(2)}_{i\alpha;j\alpha'}$$
 exactly.

Christopher D. Woodgate

 Bragg-Williams Hamiltonian for atomistic modelling:

$$H(\{\xi_{i\alpha}\}) = \frac{1}{2} \sum_{\substack{i\alpha\\j\alpha'}} V_{i\alpha;j\alpha'} \xi_{i\alpha} \xi_{j\beta}$$

- If *H* as above, $V_{i\alpha;j\alpha'} = -S^{(2)}_{i\alpha;j\alpha'}$ exactly.
- Study phase behaviour using, *e.g.* Monte Carlo simulations.

Christopher D. Woodgate	Warwick
Modelling Atomic Arrangements in Multicomponent Alloys	15 of 28

Modelling Approach 000000000 Results ●000000000 Outlook 000

Refractory High-Entropy Alloys: Background

²Woodgate, Staunton, Phys. Rev. Mater. **7** 013801 (2023)

 Christopher D. Woodgate
 Warwick

 Modelling Atomic Arrangements in Multicomponent Alloys
 16 of 28

Modelling Approach

Results •••••• Outlook 000

Refractory High-Entropy Alloys: Background

²Woodgate, Staunton, Phys. Rev. Mater. **7** 013801 (2023)

Christopher D. Woodgate

Modelling Atomic Arrangements in Multicomponent Alloys

Warwick

16 of 28

Refractory High-Entropy Alloys: Background

- First synthesised by Senkov around 2010.
- Excellent high-temperature performance, good radiation resistance.
- Previous studies of phase behaviour suggest interesting incipient ordering.

²Woodgate, Staunton, Phys. Rev. Mater. **7** 013801 (2023)

Christopher D. Woodgate

Outline	Background	Modelling Approach	Results	Outlook
0	000		0●00000000	000

Refractory HEAs: Chemical Stability Matrices

²Woodgate, Staunton, Phys. Rev. Mater. **7** 013801 (2023)

Christopher D. Woodgate	Warwick
Modelling Atomic Arrangements in Multicomponent Alloys	17 of 28

Outline	Background	Modelling Approach	Results	Outlook
0	000		0●00000000	000

Refractory HEAs: Chemical Stability Matrices

²Woodgate, Staunton, Phys. Rev. Mater. **7** 013801 (2023)

Christopher D. Woodgate

Modelling Atomic Arrangements in Multicomponent Alloys

Warwick	
17 of 28	

B32

5.02.5

0.0

'n

Nb-Mo

Nb-Ta

200 400 600 800

Mo-Ta

Nb-W

T(K)

Mo-W

Ta-W

 χ_2^{pq}

-2

Heat Capacity

Uncertainty

1000 1200

²Woodgate, Staunton, Phys. Rev. Mater. 7 013801 (2023)

Christopher D. Woodgate	Warwick
Modelling Atomic Arrangements in Multicomponent Alloys	18 of 28

▶ NbMoTaW: predicted single-phase Heusler-like ground state².

²Woodgate, Staunton, Phys. Rev. Mater. **7** 013801 (2023)

Christopher D. Woodgate	Warwick
Modelling Atomic Arrangements in Multicomponent Alloys	18 of 28

Cantor Alloy & its Derivatives: Background

Christopher D. Woodgate	Warwick
Modelling Atomic Arrangements in Multicomponent Alloys	19 of 28

Modelling Approact

Results 000000000 Outlook

Cantor Alloy & its Derivatives: Background

Christopher D. Woodgate	Warwick
Modelling Atomic Arrangements in Multicomponent Alloys	19 of 28

Cantor Alloy & its Derivatives: Background

- First synthesised by Cantor around 2004.
- Prototypical fcc high-entropy alloys.
- Experimentally observed atomic short-range order.

Christopher D. Woodgate	Warwick
Modelling Atomic Arrangements in Multicomponent Alloys	19 of 28

Christopher D. Woodgate	Warwick
Modelling Atomic Arrangements in Multicomponent Alloys	20 of 28

X WK

WU

Г

L

WU

Г

L

X WK

³Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022). (Editors' Suggestion.)

Christopher D. Woodgate

0.00 L

X WK

Modelling Atomic Arrangements in Multicomponent Alloys

WU

L

Christopher D. Woodgate	Warwick
Modelling Atomic Arrangements in Multicomponent Alloys	21 of 28

▶ No single-phase ground state³.

³Woodgate, Staunton, Phys. Rev. B 105 115124 (2022). (Editors' Suggestion.)

Christopher D. Woodgate

Outline	Background	Modelling Approach	Results	Outloo
0	000		000000●000	000

Importance of the Magnetic State

⁴Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023)

Christopher D. Woodgate	Warwick
Modelling Atomic Arrangements in Multicomponent Alloys	22 of 28

Outline	Background	Modelling Approach	Results	Outlool
0	000		000000●000	000

Importance of the Magnetic State

Different magnetic state results in different orderings⁴.

⁴Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023)

Christopher D. Woodgate
Outline	Background	Modelling Approach	Results	Outlook
O	000		0000000●00	000

⁵Marchant, Woodgate, Patrick, Staunton, Phys. Rev. B **103**, 094414 (2021)

Christopher D. Woodgate	Warwick
Modelling Atomic Arrangements in Multicomponent Alloys	23 of 28

Outline	Background	Modelling Approach	Results	Outlook
0	000		0000000●00	000

Atomic ordering affects magnetostriction⁵.

⁵Marchant, Woodgate, Patrick, Staunton, Phys. Rev. B 103, 094414 (2021)

Christopher D. Woodgate	Warwick
Modelling Atomic Arrangements in Multicomponent Alloys	23 of 28

Outline	Background	Modelling Approach	Results	Outlook
0	000		00000000●0	000

⁶Woodgate, Patrick, Lewis, Staunton, **arXiv:2307.15470**. ⁷Woodgate, Patrick, Lewis, Staunton, in preparation.

Christopher D. Woodgate	Warwick
Modelling Atomic Arrangements in Multicomponent Alloys	24 of 28

Outline	Background	Modelling Approach	Results	Outlook
0	000		00000000●0	000

Atomic ordering affects magnetic anisotropy^{6,7}.

⁶Woodgate, Patrick, Lewis, Staunton, **arXiv:2307.15470**. ⁷Woodgate, Patrick, Lewis, Staunton, in preparation.

Christopher D. Woodgate

Modelling Atomic Arrangements in Multicomponent Alloys

Feeding into Other Simulation Techniques

⁵Shenoy, Woodgate, *et al.*, **arXiv:2309.08689**.

Christopher D. Woodgate	Warwick
Modelling Atomic Arrangements in Multicomponent Alloys	25 of 28

Feeding into Other Simulation Techniques

Can use physically motivated configurations in training data for machine-learned interatomic potentials⁸.

 Christopher D. Woodgate
 Warwick

 Modelling Atomic Arrangements in Multicomponent Alloys
 25 of 28

⁵Shenoy, Woodgate, *et al.*, **arXiv:2309.08689**.

Modelling Approach

Next Steps and Future Work

Christopher D. Woodgate	
Modelling Atomic Arrangements in Multicomponent Alloys	

Warwick
26 of 28

Next Steps and Future Work

Approach is highly computationally efficient. Materials discovery?

Next Steps and Future Work

- Approach is highly computationally efficient. Materials discovery?
- Feed into more sophisticated techniques, could we model impact of short-range order on physical properties of HEAs?.

Next Steps and Future Work

- Approach is highly computationally efficient. Materials discovery?
- Feed into more sophisticated techniques, could we model impact of short-range order on physical properties of HEAs?.
- Broaden approach to modelling general high-entropy oxides, carbides, etc.?.

Christopher D. Woodgate	
Modelling Atomic Arrangements in Multicomponent	Alloys

Warwick	
27 of 28	

Novel Approach For Modelling Atomic Arrangements in Alloys Computationally efficient, DFT-based methodology predicts ordering and gives physical insight.

Novel Approach For Modelling Atomic Arrangements in Alloys Computationally efficient, DFT-based methodology predicts ordering and gives physical insight.

Can Study Impact on Materials Properties

Examples where atomic ordering impacts materials' magnetic properties.

Christopher D. Woodgate
Modelling Atomic Arrangements in Multicomponent Alloys

Novel Approach For Modelling Atomic Arrangements in Alloys Computationally efficient, DFT-based methodology predicts ordering and gives physical insight.

Can Study Impact on Materials Properties

Examples where atomic ordering impacts materials' magnetic properties.

Interface with other techniques

Use physically motivated configurations in subsequent studies using other modelling techniques.

Christopher D. Woodgate	Warwick
Modelling Atomic Arrangements in Multicomponent Alloys	27 of 28

Acknowledgements

Funding

- C.D.W. supported by a studentship within EPSRC-funded CDT: warwick.ac.uk/hetsys
- EPSRC (UK)
- NSF (US)
- DOE (US)

People

University of Warwick, UK

- Lakshmi Shenoy
- James R. Kermode
- Albert P. Bartók
- George A. Marchant
- Julie B. Staunton

Northeastern University, USA

- Laura H. Lewis
- Daniel Hedlund

University of Oxford, UK

Christopher E. Patrick

Christopher D. Woodgate

Modelling Atomic Arrangements in Multicomponent Alloys