Short Range Order in High-Entropy Alloys: First Principles Theory and Atomistic Modelling

Christopher D. Woodgate, Julie B. Staunton

University of Warwick, Coventry, UK

Thursday 25th August 2022

Christopher D. Woodgate, Julie B. Staunton SRO in HEAs

C.Woodgate@warwick.ac.uk

Our Description

- On lattice.
- Specify configuration by $\{\xi_{i\alpha}\}$.
- Interested in the average value of these:

$$c_{i\alpha} \equiv \langle \xi_{i\alpha} \rangle.$$

- High temperature, homogeneous: $c_{i\alpha} = c_{\alpha}$.
- ▶ Perturb homogeneous state $c_{i\alpha} = c_{\alpha} + \delta c_{i\alpha}$ and see what favourable correlations are.

(1)

Cantor-Wu Alloys

Summary O

Concentration Waves

$$c_{i\alpha} = c_{\alpha} + \eta_{\alpha} \frac{1}{2} \left(e^{i\mathbf{q}\cdot\mathbf{R}_{i}} + e^{-i\mathbf{q}\cdot\mathbf{R}_{i}} \right), \quad \mathbf{q} = \left(\frac{1}{2}, \frac{1}{2} \right).$$

$$(2)$$

$$\eta = (0,0) \qquad \eta = (0.25, -0.25) \qquad \eta = (0.5, -0.5)$$

Our Approach oo●o	Cantor-Wu Alloys 0000	

Energetics

- Evaluate cost of fluctuations ab initio via DFT, using KKR-CPA and a linear response theory^{ab}.
- Mean-field free energy:

$$G = \beta^{-1} \sum_{i\alpha} c_{i\alpha} \log c_{i\alpha} - \sum_{i\alpha}' \nu_{i\alpha} c_{i\alpha} + \langle \Omega_{el} \rangle_0 [\{c_{i\alpha}\}] \quad (3)$$

Important quantity:

$$S_{i\alpha;j\alpha'}^{(2)} \equiv \frac{\partial^2 \langle \Omega_{\mathsf{el}} \rangle_0}{\partial c_{i\alpha} \partial c_{j\alpha'}} \rightsquigarrow \Psi_{\alpha\alpha'}^{-1}(\mathbf{q}) \tag{4}$$

^aS. N. Khan, J. B. Staunton, G. M. Stocks, Phys. Rev. B **93** 054206 (2016) ^bB. L. Gyorffy, G. M. Stocks, Phys. Rev. Lett. **50**, 374 (1983)

SRO in HEAs

Energetics

Bragg-Williams Hamiltonian for atomistic modelling:

$$H(\{\xi_{i\alpha}\}) = \frac{1}{2} \sum_{\substack{i\alpha\\j\alpha'}} V_{i\alpha;j\alpha'} \xi_{i\alpha} \xi_{j\beta} + \sum_{i\alpha} \nu_{i\alpha} \xi_{i\alpha}.$$
 (5)

► If *H* as above,
$$V_{i\alpha;j\alpha'}$$
 are exactly $-S^{(2)}_{i\alpha;j\alpha'}$.

Our Approach	Cantor-Wu Alloys	Summa
0000	●000	O

Cantor-Wu Alloys

Prototypical FCC high entropy alloy is the "Cantor alloy" - NiCoFeMnCr.

> At what temperature will order emerge? What is the nature of order?

We looked at a series of three Cantor-Wu alloys: NiCoCr, NiCoFeCr, NiCoFeMnCr, along with some binary subsystems¹.

Christopher D. Woodgate, Julie B. Staunton

SRO in HEAs

¹C. D. Woodgate, J. B. Staunton, Phys. Rev. B **105** 115124 (2022)

Linear Response

Eigenvalues of $\Psi_{\alpha\alpha'}^{-1}(\mathbf{q})$ around IBZ at 1200K.

C. D. Woodgate, J. B. Staunton, Phys. Rev. B 105 115124 (2022)

Christopher D. Woodgate, Julie B. Staunton SRO in HEAs

Atomistic Simulations

NiCoCr

C. D. Woodgate, J. B. Staunton, Phys. Rev. B 105 115124 (2022)

Cantor-Wu Alloys

Atomistic Simulations

C. D. Woodgate, J. B. Staunton, Phys. Rev. B 105 115124 (2022)

Christopher D. Woodgate, Julie B. Staunton SRO in HEAs

Summary

- SRO dominated by Co-Cr and Cr-Cr correlations.
- Fe, Mn, serve a diluting effect and stabilise solid solution.
- Predicted ordering temperatures are low, consistent with experiment.
- Method obtains results comparable with conventional techniques for a fraction of the computational cost.

Acknowledgements

- I am funded by a studentship in the UK EPSRC-supported CDT in Modelling of Heterogeneous Systems at the University of Warwick, UK. warwick.ac.uk/hetsys
- ▶ Work was also supported by EPSRC grants as part of the PRETAMAG project.

Christopher D. Woodgate, Julie B. Staunton SRO in HEAs C.Woodgate@warwick.ac.uk

Density of States

Linear Response

System	<i>k</i> -vector	δc_1	δc_2	δc_3	δc_4	δc_5	$T_{ m order}$ (K)
NiCr	(0, 0, 0.6)	0.70711	-0.70711				200
CoCr	(0, 0, 1)	0.70711	-0.70711				793
NiCo	(0, 0.6, 0.6)	0.70711	-0.70711				83
NiCoCr	(0, 0, 1)	-0.034613	-0.68916	0.72378			606
NiCoFeCr	(0, 0, 1)	0.013671	-0.68858	-0.048489	0.72340		404
NiCoFeMnCr	(0, 0, 1)	0.033024	-0.68516	-0.081509	0.010666	0.72298	281

Fitting to Pairwise Interaction

We approximate the true interaction by fitting to a Bragg-Williams-like Hamiltonian. That is, we approximate the *ab initio* data by $V_{\alpha\beta}(\mathbf{q})$, where

$$V_{\alpha\beta}(\mathbf{q}) = V_{\alpha\beta}^{0} + V_{\alpha\beta}^{1} \left(\sum_{\{\mathbf{R}_i\}_1} e^{i\mathbf{q}\cdot\mathbf{R}_i} \right) + \dots + V_{\alpha\beta}^{N} \left(\sum_{\{\mathbf{R}_i\}_N} e^{i\mathbf{q}\cdot\mathbf{R}_i} \right), \quad (6)$$

a constant plus a nearest-neighbour term, next-nearest neighbour term, etc.

Pairwise Interactions

$V^{(1)}_{lphaeta}$	Ni	Co	
Ni	0.023	-0.023	
Co	-0.023	0.023	
$V^{(1)}_{\alpha\beta}$	Ni	Cr	
Ni	0.199	-0.199	
Cr	-0.199	0.199	
$V^{(1)}_{lphaeta}$	Co	Cr	
$\frac{V^{(1)}_{\alpha\beta}}{Co}$	Co 1.026	Cr -1.026	
$\begin{array}{c} V^{(1)}_{\alpha\beta} \\ \hline \text{Co} \\ \text{Cr} \end{array}$	Co 1.026 -1.026	Cr -1.026 1.026	
$\frac{V^{(1)}_{\alpha\beta}}{Co}$	Co 1.026 -1.026	Cr -1.026 1.026	
$\begin{array}{c} V^{(1)}_{\alpha\beta}\\ \hline Co\\ Cr\\ V^{(1)}_{\alpha\beta} \end{array}$	Co 1.026 -1.026 Ni	Cr -1.026 1.026 Co	Cr
	Co 1.026 -1.026 Ni -0.218	Cr -1.026 1.026 Co 0.682	Cr -0.465
$\begin{array}{c} V^{(1)}_{\alpha\beta}\\ \hline \text{Co}\\ \text{Cr}\\ \hline V^{(1)}_{\alpha\beta}\\ \hline \text{Ni}\\ \text{Co}\\ \end{array}$	Co 1.026 -1.026 Ni -0.218 0.682	Cr -1.026 1.026 Co 0.682 0.672	Cr -0.465 -1.351

Pairwise Interactions

$V^{(1)}_{\alpha\beta}$	Ni	Co	Fe	Cr
Ni	-0.338	0.606	0.097	-0.367
Co	0.606	0.656	-0.049	-1.213
Fe	0.097	-0.049	-0.019	-0.029
Cr	-0.367	-1.213	-0.029	1.609
$V^{(2)}_{lphaeta}$	Ni	Co	Fe	Cr
Ni	0.316	0.058	-0.061	-0.313
Co	0.058	0.005	-0.007	-0.057
Fe	-0.061	-0.007	-0.010	0.058
Cr	-0.313	-0.057	0.058	0.312
$V^{(3)}_{lphaeta}$	Ni	Co	Fe	Cr
Ni	0.002	0.090	0.008	-0.100
Co	0.090	0.053	-0.009	-0.135
Fe	0.008	-0.009	-0.002	0.003
Cr	-0.100	-0.135	0.003	0.232

Atomistic Simulations

NiCoFeCr

Atomistic Simulations

NiCoFeMnCr

Ab Initio Theory

Expand free energy around homogeneous reference state:

$$\Omega(\{\bar{c}_{i\alpha}\}) = \Omega(\{c_{\alpha}\}) + \sum_{i\alpha} \frac{\partial\Omega}{\partial\bar{c}_{i\alpha}} \Big|_{\{c_{\alpha}\}} \Delta\bar{c}_{i\alpha} + \frac{1}{2} \sum_{i\alpha;j\alpha'} \frac{\partial^{2}\Omega}{\partial\bar{c}_{i\alpha}\partial\bar{c}_{j\alpha'}} \Big|_{\{c_{\alpha}\}} \Delta\bar{c}_{i\alpha}\Delta\bar{c}_{j\alpha'} + \dots$$
(7)

Ab Initio Theory

Important bit is second-order term.

$$\delta\Omega = \frac{1}{2} \sum_{i,j} \sum_{\alpha,\alpha'} \Delta \bar{c}_{i\alpha} [\beta^{-1} C_{\alpha,\alpha'}^{-1} - S_{i\alpha,j\alpha'}^{(2)}] \Delta \bar{c}_{j\alpha'}, \tag{8}$$

where
$$-rac{\partial^2 \langle \Omega_{
m el}
angle_0}{\partial ar{c}_{ilpha \partial} ar{c}_{jlpha'}} \equiv S^{(2)}_{ilpha;jlpha'}$$
, and $C^{-1}_{lpha lpha'} = rac{\delta_{lpha lpha'}}{c_{lpha}}$.

Ab Initio Theory

► Or, in reciprocal space,

$$\delta\Omega = \frac{1}{2} \sum_{\mathbf{k}} \sum_{\alpha,\alpha'} \Delta \bar{c}_{\alpha}(\mathbf{k}) [\beta^{-1} C_{\alpha\alpha'}^{-1} - S_{\alpha\alpha'}^{(2)}(\mathbf{k})] \Delta \bar{c}_{\alpha'}(\mathbf{k}).$$
(9)