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Motivation

▶ L10 FeNi (tetrataenite) is a under
consideration as a candidate
rare-earth-free permanent magnet,
provided structure can be
optimised.

▶ Consists entirely of two abundant
3d transition metals.

▶ Dispute in the literature as to the
value of its uniaxial anisotropy
energy.
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Magnetocrystalline Anisotropy Energy (MAE)

▶ Tetragonal sample with magnetisation
M = |M|(cos θ cosϕ, cos θ sinϕ, sin θ).

▶ Magnetocrystalline anisotropy energy written

K (θ, ϕ) =K1 sin
2 θ + K2 sin

4 θ + K3 sin
4 θ cos 4ϕ+ . . .

≈K1 sin
2 θ

▶ Conventional to measure/calculate uniaxial MAE:

KU = K (ẑ)− K (x̂) = K1 + K2 + K3
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History of L10 FeNi

▶ L10 phase first reported in 1960s by Néel and co-workers12.

▶ Also found to occur naturally in metallic meteorites, mineral
name tetrataenite.

▶ Challenging to synthesise. Recent experimental efforts have
focussed on manufacturing thin films or on targeted
processing.

▶ Extensively studied using density functional theory
calculations, e.g. Ref. 3. Primarily for perfectly ordered
structures at T = 0 K, though.

1Néel et al., J. Appl. Phys. 35 873 (1964)
2Paulevé et al., J. Appl. Phys. 55 989 (1968)
3M. Werwiński, W. Marciniak, J. Phys. D: Appl. Phys. 50 495008 (2017)
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▶ Also found to occur naturally in metallic meteorites, mineral
name tetrataenite.

▶ Challenging to synthesise. Recent experimental efforts have
focussed on manufacturing thin films or on targeted
processing.

▶ Extensively studied using density functional theory
calculations, e.g. Ref. 3. Primarily for perfectly ordered
structures at T = 0 K, though.
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Determinations of KU
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▶ Problem: DFT studies primarily study perfectly ordered
structures at T = 0 K.
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Determinations of K1, K2, K3

▶ Only two studies resolve K into its separate coefficients.

▶ Both find large K2, K3.
▶ Néel et al.: K1 = 0.32, K2 = 0.23.
▶ Paulevé et al.: K1 = 0.3, K2 = 0.17, K3 = 0.08.
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Potential Origins of Large K2 and K3?

▶ In our DFT calculations, we find
negligible K2, K3.

▶ Néel proposes bulk sample made
up of individual L10 nanocrystals,
layering directions not all aligned1.

▶ Exchange interaction between
nanoscale domains yields large,
macroscopic K2 and K3.

ẑ

ŷ

x̂

1Néel et al., J. Appl. Phys. 35 873 (1964)
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Degree of Atomic Order

▶ Even if I have a single-variant nanocrystal, is is perfectly
ordered?

▶ Define atomic order parameter, S to quantify how
well-ordered sample is4.

1a

Fe0.5(1+S)Ni0.5(1-S)

1d

1a

Fe0.5(1+S)Ni0.5(1-S)

1d

4C. D. Woodgate, C. E. Patrick, L. H. Lewis, J. B. Staunton, arXiv:2307.15470
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Degree of Atomic Order
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▶ Clear disagreement between theory and experiment once
effects of imperfect atomic order are considered4.

4C. D. Woodgate, C. E. Patrick, L. H. Lewis, J. B. Staunton, arXiv:2307.15470
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Effects of Finite Temperature
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▶ Robust computationally predicted finite temperature
performance4.

4C. D. Woodgate, C. E. Patrick, L. H. Lewis, J. B. Staunton, arXiv:2307.15470
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Summary: Aspects to Consider

Aspect 1: Polycrystalline, Multivariant Samples

Experimentally FeNi has significant K2, K3; these are not detected
in DFT calculations. Nanoscale origins?

Aspect 2: Imperfect Atomic Order

Decreasing atomic order decreases computationally predicted
MAE, makes for large discrepancy between theory and experiment.

Aspect 3: Finite Temperature

Tetrataenite has good finite temperature performance, but
increasing temperature decreases MAE compared to T = 0.
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