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Context Modelling Approach Results Next Steps Conclusions

Multicomponent Alloys

▶ Steels, e.g. Fe70Cr20Ni10.

▶ High Entropy Alloys (HEAs), e.g. CrMnFeCoNi, VNbMoTaW.

▶ At what temperature will order emerge? What is the nature of
order? Short-range? Long-range? Materials properties?

▶ Challenging for modellers. Huge number of potential
compositions and atomic configurations. Magnetic state for
alloys containing Fe, Mn, Co?
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Our Description

▶ Have lots of lattice-based configurations.

▶ Specify these by {ξiα}.
▶ Interested in the average value of these, i.e.

work with partial occupancies:

ciα ≡ ⟨ξiα⟩

▶ Construct an effective medium representing the
average electronic structure of the disordered
alloy; use the KKR-CPA to do this12.

1Woodgate, Staunton, Phys. Rev. B 105 115124 (2022)
2Woodgate, Staunton, Phys. Rev. Mater. 7 013801 (2023)
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Key Idea

▶ Perturb high-T , homogeneous state
ciα = cα +∆ciα and see what favourable
correlations are12.

▶ Take advantage of translational symmetry and
do this in reciprocal space.

ciα = cα +
∑
k

e ik·Ri∆cα(k) (1)

▶ Get energetic costs via a perturbative analysis of
CPA reference medium3; think DFPT.

1Woodgate, Staunton, Phys. Rev. B 105 115124 (2022)
2Woodgate, Staunton, Phys. Rev. Mater. 7 013801 (2023)
3Khan, Staunton, Stocks, Phys. Rev. B 105 115124 (2022)
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Understanding Ordering Tendencies
Two options:

▶ Apply Landau theory to free energy
constructed via perturbative analysis12.

▶ Map derivatives of internal energy on to
pairwise atomistic model:

H({ξiα}) =
1

2

∑
iα
jα′

Viα; jα′ ξiαξjβ

▶ Generate physically-motivated
configurations for subsequent study.

1Woodgate, Staunton, Phys. Rev. B 105 115124 (2022)
2Woodgate, Staunton, Phys. Rev. Mater. 7 013801 (2023)
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Successful Applications
▶ CrMnFeCoNi and derivatives.

▶ C. D. Woodgate, J. B. Staunton,
Phys. Rev. B 105 115124 (2022).

▶ VNbMoTaW and derivatives.
▶ C. D. Woodgate, J. B. Staunton,

Phys. Rev. Mater. 7 013801 (2023).

▶ Influcence of Magnetism on Atomic Ordering.
▶ C. D. Woodgate, D. Hedlund, L. H. Lewis, J. B. Staunton,

Phys. Rev. Mater. 7, 053801 (2023).

▶ Influence of Ti additions: TixVNbMoTaW
▶ C. D. Woodgate, J. B. Staunton,

In press, J. Appl. Phys. arXiv:2401.16243.

▶ Designing Magnetic Intermetallics: FeNi + X
▶ C. D. Woodgate, L. H. Lewis, J. B. Staunton,

arXiv:2401.02809.

▶ AlxCrFeCoNi Superalloy.
▶ C. D. Woodgate, G. A. Marchant, L. B. Partay, J. B. Staunton,

In preparation.
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Case Study: CrCoNi

▶ Cr aligns antiparallel, Ni and Co parallel with total moment.

4Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. 7 053801 (2023)
C. D. Woodgate Warwick
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CrCoNi: Electronic Structure

▶ Cr aligns antiparallel, Ni and Co parallel with total moment.
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CrCoNi: Perturbative Analysis
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▶ Shape of modes and location of minimum altered.

4Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. 7 053801 (2023)
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CrCoNi: Inferred Orderings

Cr4Co50Ni46

Cr91Ni9

FM
Cr4Co50Ni46

Cr91Ni9

FM
Cr68Ni32

Cr22Co44Ni34

PM
Cr68Ni32

Cr22Co44Ni34

PM

▶ Different predicted chemical orderings based on magnetic
state! Can we observe this experimentally in some systems?

4Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. 7 053801 (2023)
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CrCoNi: Atomistic Modelling
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Uncertainty

▶ Different ordering and ordering temperature evident in MC
simulations, too.

4Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. 7 053801 (2023)
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Next Steps and Future Work
▶ Multicomponent alloys represent a huge playground.

▶ Approach is computationally efficient; all figures shown today
can be reproduced in ∼ 100 CPU-hours. Materials discovery?

▶ Feed into more sophisticated techniques, e.g. use
rapidly-generated configurations in training sets for
machine-learned interatomic potentials5.

5Shenoy, Woodgate, Staunton, Bartók, Becquart, Domain, and Kermode, in
press, Phys. Rev. Mater. arXiv:2309.08689
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Take-Home Messages

When Modelling Alloys, Magnetism is Important

Nature of the magnetic state in an alloy can alter strength of
interactions/correlations between elements.

Experimental Implications

Can some multicomponent alloys be processed in an applied
magnetic field to tune atomic ordering?

Interface with other techniques

Can use computationally efficient approach to generate
configurations for subsequent studies.
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