Connections Between Magnetism and Preferred Atomic Arrangements in Multicomponent Alloys

Christopher D. Woodgate

University of Warwick, Coventry, UK

CCP9 Conference 2024

C. D. Woodgate

Context ●	Modelling Approach	Results 00000	Next Steps O	Conclusions

C. D. Woodgate	Warwick
Connections Between Magnetism and Preferred Atomic Arrangements in Multicomponent Alloys	2 of 14

Context ●	Modelling Approach	Results 00000	Next Steps O	Conclusions

► Steels, *e.g.* Fe₇₀Cr₂₀Ni₁₀.

C. D. Woodgate	Warwick
Connections Between Magnetism and Preferred Atomic Arrangements in Multicomponent Alloys	2 of 14

Context •	Modelling Approach	Results 00000	Next Steps O	Conclusions

Steels, *e.g.* Fe₇₀Cr₂₀Ni₁₀.

► High Entropy Alloys (HEAs), *e.g.* CrMnFeCoNi, VNbMoTaW.

C. D. Woodgate	Warwick
Connections Between Magnetism and Preferred Atomic Arrangements in Multicomponent Alloys	2 of 14

Co

- ► Steels, *e.g.* Fe₇₀Cr₂₀Ni₁₀.
- ► High Entropy Alloys (HEAs), *e.g.* CrMnFeCoNi, VNbMoTaW.

At what temperature will order emerge? What is the nature of order? Short-range? Long-range? Materials properties?

D. Woodgate	Warwick
nections Between Magnetism and Preferred Atomic Arrangements in Multicomponent Alloys	2 of 14

- ► Steels, *e.g.* Fe₇₀Cr₂₀Ni₁₀.
- ► High Entropy Alloys (HEAs), *e.g.* CrMnFeCoNi, VNbMoTaW.

- At what temperature will order emerge? What is the nature of order? Short-range? Long-range? Materials properties?
- Challenging for modellers. Huge number of potential compositions and atomic configurations. Magnetic state for alloys containing Fe, Mn, Co?

Context O	Modelling Approach ●000	Results 00000	Next Steps O	Conclusions

Have lots of lattice-based configurations.

 1 Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022) 2 Woodgate, Staunton, Phys. Rev. Mater. **7** 013801 (2023)

C. D. Woodgate

Connections Between Magnetism and Preferred Atomic Arrangements in Multicomponent Alloys

Warwick 3 of 14

Context O	Modelling Approach ●000	Results 00000	Next Steps o	Conclusions

- Have lots of lattice-based configurations.
- Specify these by $\{\xi_{i\alpha}\}$.

 1 Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022) 2 Woodgate, Staunton, Phys. Rev. Mater. **7** 013801 (2023)

C. D. Woodgate

Connections Between Magnetism and Preferred Atomic Arrangements in Multicomponent Alloys

Warwick 3 of 14

Context	Modelling Approach	Results	Next Steps	Conclusions
O	●000	00000	o	

- Have lots of lattice-based configurations.
- Specify these by $\{\xi_{i\alpha}\}$.
- Interested in the average value of these, i.e. work with partial occupancies:

$$c_{i\alpha} \equiv \langle \xi_{i\alpha} \rangle$$

¹ Woodgate,	Staunton,	Phys.	Rev.	B 105	115124 (2022)
² Woodgate,	Staunton,	Phys.	Rev.	Mater.	7 013801 (2023)

C. D. Woodgate	Warwick
Connections Between Magnetism and Preferred Atomic Arrangements in Multicomponent Alloys	3 of 14

Context	Modelling Approach	Results	Next Steps	Conclusions
O	●000	00000	o	00

- Have lots of lattice-based configurations.
- Specify these by $\{\xi_{i\alpha}\}$.
- Interested in the average value of these, i.e. work with partial occupancies:

$$c_{ilpha}\equiv \langle \xi_{ilpha}
angle$$

Construct an effective medium representing the average electronic structure of the disordered alloy; use the KKR-CPA to do this¹².

¹Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022)
 ²Woodgate, Staunton, Phys. Rev. Mater. **7** 013801 (2023)

C. D. Woodgate

Connections Between Magnetism and Preferred Atomic Arrangements in Multicomponent Alloys

Warwick 3 of 14

Context O	Modelling Approach ○●○○	Results 00000	Next Steps O	Conclusions 00
Key Idea			00000	

Perturb high-*T*, homogeneous state c_{iα} = c_α + Δc_{iα} and see what favourable correlations are¹².

¹Woodgate, Staunton, Phys. Rev. B 105 115124 (2022)
 ²Woodgate, Staunton, Phys. Rev. Mater. 7 013801 (2023)
 ³Khan, Staunton, Stocks, Phys. Rev. B 105 115124 (2022)

C. D. Woodgate

Context O	Modelling Approach ○●○○	Results 00000	Next Steps o	Conclusions 00
Key Idea			00	00000

- Perturb high-*T*, homogeneous state c_{iα} = c_α + Δc_{iα} and see what favourable correlations are¹².
- Take advantage of translational symmetry and do this in reciprocal space.

$$c_{ilpha} = c_{lpha} + \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{R}_i}\Delta c_{lpha}(\mathbf{k})$$
 (1)

¹Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022)
 ²Woodgate, Staunton, Phys. Rev. Mater. **7** 013801 (2023)
 ³Khan, Staunton, Stocks, Phys. Rev. B **105** 115124 (2022)

C. D. Woodgate

Context O	Modelling Approach ○●○○	Results 00000	Next Steps O	Conclusions 00
Key Idea Perturk $c_{i\alpha} = c_{i\alpha}$ correla	o high- ${\cal T}$, homoger $c_lpha+\Delta c_{ilpha}$ and see tions are $^{12}.$	eous state what favourable	e 000	

 Take advantage of translational symmetry and do this in reciprocal space.

$$c_{i\alpha} = c_{\alpha} + \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{R}_i}\Delta c_{\alpha}(\mathbf{k})$$
 (1)

 Get energetic costs via a perturbative analysis of CPA reference medium³; think DFPT.

¹Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022)
 ²Woodgate, Staunton, Phys. Rev. Mater. **7** 013801 (2023)
 ³Khan, Staunton, Stocks, Phys. Rev. B **105** 115124 (2022)

C. D. Woodgate

Connections Between Magnetism and Preferred Atomic Arrangements in Multicomponent Alloys

Understanding Ordering Tendencies

Two options:

 Apply Landau theory to free energy constructed via perturbative analysis¹².

 1 Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022) 2 Woodgate, Staunton, Phys. Rev. Mater. **7** 013801 (2023)

C. D. Woodgate

Results 00000 Next Steps

Understanding Ordering Tendencies

Two options:

- Apply Landau theory to free energy constructed via perturbative analysis¹².
- Map derivatives of internal energy on to pairwise atomistic model:

$$H(\{\xi_{i\alpha}\}) = \frac{1}{2} \sum_{\substack{j\alpha'\\j\alpha'}} V_{i\alpha;j\alpha'} \xi_{i\alpha} \xi_{j\beta}$$

 1 Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022) 2 Woodgate, Staunton, Phys. Rev. Mater. **7** 013801 (2023)

C. D. Woodgate

Connections Between Magnetism and Preferred Atomic Arrangements in Multicomponent Alloys

Warwick

Results 00000 Next Steps

Understanding Ordering Tendencies

Two options:

- Apply Landau theory to free energy constructed via perturbative analysis¹².
- Map derivatives of internal energy on to pairwise atomistic model:

$$H(\{\xi_{i\alpha}\}) = \frac{1}{2} \sum_{\substack{i\alpha\\j\alpha'}} V_{i\alpha;j\alpha'} \,\xi_{i\alpha}\xi_{j\beta}$$

 Generate physically-motivated configurations for subsequent study.

¹Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022)

²Woodgate, Staunton, Phys. Rev. Mater. **7** 013801 (2023)

C. D. Woodgate

Context N O C	lodelling Approach ○○○●	Results 00000	Next Steps O	Conclusions
Successful A	pplications			
CrMnF	eCoNi and deriva	tives.		
C. Ph	D. Woodgate, J. B. S ys. Rev. B 105 11512	taunton, 4 (2022).		
VNbM	oTaW and derivat	tives.		
► C. Ph	D. Woodgate, J. B. S ys. Rev. Mater. 7 013	taunton, 8801 (2023).		
Influce	nce of Magnetism	ı on Atomic O	ordering.	
► C. Ph	D. Woodgate, D. Hed ys. Rev. Mater. 7 , 05	llund, L. H. Lewis, 3801 (2023).	, J. B. Staunton,	
Influen	ce of Ti additions	: Ti _x VNbMo ⁻	TaW	
► C.	D. Woodgate, J. B. S press I Appl Phys a	taunton, arXiv:2401 16243		
 Design C. ar) 	ing Magnetic Inte D. Woodgate, L. H. L Kiv:2401.02809.	ermetallics: Fe .ewis, J. B. Staunt	Ni + X	
► Al _× CrF	eCoNi Superalloy			
C.	D. Woodgate, G. A. M preparation.	Marchant, L. B. Pa	artay, J. B. Staunton,	
C D Wasdasts				M/emuiale

Context 0	Modelling Approach 000●	Results 00000	Next Steps O	Conclusions 00
Succes	sful Applications			
	CrMpEcCoNi and dariy	atives		
	CrivinFeColvi and deriv	alives.		
	Phys Rev B 105 1151	24 (2022)		
	VNbMoToW and deriv			
	C D Woodgate I B	Staunton		
	Phys. Rev. Mater. 7 01	13801 (2023).		
	Influcence of Magnetis	n on Atomic C	Ordering.	
	C. D. Woodgate. D. He	dlund. L. H. Lewis	. J. B. Staunton.	
	Phys. Rev. Mater. 7, 0	53801 (2023).	, ,	
	Influence of Ti addition	s: Ti _x VNbMo	TaW	
	C. D. Woodgate, J. B.	Staunton,		
	In press, J. Appl. Phys.	arXiv:2401.16243.		
	Designing Magnetic Int	ermetallics: Fe	eNi + X	
	C. D. Woodgate, L. H.	Lewis, J. B. Staun	ton,	
	arXiv:2401.02809.			
	Al _x CrFeCoNi Superallo	у.		
	C. D. Woodgate, G. A.	Marchant, L. B. P	artay, J. B. Staunton,	
	In preparation.			
C D Woodgat	e			Warwick

Case Study: CrCoNi

Cr aligns antiparallel, Ni and Co parallel with total moment.

⁴Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023)

C. D. Woodgate

Cr aligns antiparallel, Ni and Co parallel with total moment.

⁴Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. 7 053801 (2023)

C. D. Woodgate Warwick Connections Between Magnetism and Preferred Atomic Arrangements in Multicomponent Alloys 8 of 14

Context O	Modelling Approach	Results 00●00	Next Steps O	Conclusions

CrCoNi: Perturbative Analysis

Shape of modes and location of minimum altered.

⁴Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023) C. D. Woodgate Warwick Connections Between Magnetism and Preferred Atomic Arrangements in Multicomponent Alloys 9 of 14

CrCoNi: Inferred Orderings

Different predicted chemical orderings based on magnetic state! Can we observe this experimentally in some systems?

⁴Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023) C. D. Woodgate Warwick

CrCoNi: Atomistic Modelling

C. D. Woodgate

Next Steps and Future Work

Multicomponent alloys represent a huge playground.

⁵Shenoy, Woodgate, Staunton, Bartók, Becquart, Domain, and Kermode, in press, Phys. Rev. Mater. arXiv:2309.08689

C. D. Woodgate

Context	Modelling Approach	Results	Next Steps	Conclusions
O	0000	00000		00

Next Steps and Future Work

- Multicomponent alloys represent a *huge* playground.
- Approach is computationally efficient; all figures shown today can be reproduced in ~ 100 CPU-hours. Materials discovery?

⁵Shenoy, Woodgate, Staunton, Bartók, Becquart, Domain, and Kermode, in press, Phys. Rev. Mater. arXiv:2309.08689

C. D. Woodgate

Context O	Modelling Approach	Results 00000	Next Steps	Conclusions 00

Next Steps and Future Work

- Multicomponent alloys represent a huge playground.
- ▶ Approach is computationally efficient; all figures shown today can be reproduced in ~ 100 CPU-hours. Materials discovery?
- Feed into more sophisticated techniques, e.g. use rapidly-generated configurations in training sets for machine-learned interatomic potentials⁵.

⁵Shenoy, Woodgate, Staunton, Bartók, Becquart, Domain, and Kermode, in press, Phys. Rev. Mater. arXiv:2309.08689

C. D. Woodgate	Warwick
Connections Between Magnetism and Preferred Atomic Arrangements in Multicomponent Alloys	12 of 14

When Modelling Alloys, Magnetism is Important

Nature of the magnetic state in an alloy can alter strength of interactions/correlations between elements.

Experimental Implications

Can some multicomponent alloys be processed in an applied magnetic field to tune atomic ordering?

Interface with other techniques

C. D. Woodgate	Warwick
Connections Between Magnetism and Preferred Atomic Arrangements in Multicomponent Alloys	13 of 14

When Modelling Alloys, Magnetism is Important

Nature of the magnetic state in an alloy can alter strength of interactions/correlations between elements.

Experimental Implications

Can some multicomponent alloys be processed in an applied magnetic field to tune atomic ordering?

Interface with other techniques

C. D. Woodgate	Warwick
Connections Between Magnetism and Preferred Atomic Arrangements in Multicomponent Alloys	13 of 14

When Modelling Alloys, Magnetism is *Important*

Nature of the magnetic state in an alloy can alter strength of interactions/correlations between elements.

Experimental Implications

Can some multicomponent alloys be processed in an applied magnetic field to tune atomic ordering?

Interface with other techniques

C. D. Woodgate	Warwick
Connections Between Magnetism and Preferred Atomic Arrangements in Multicomponent Alloys	13 of 14

When Modelling Alloys, Magnetism is *Important* Nature of the magnetic state in an alloy can alter strength of interactions/correlations between elements.

Experimental Implications

Can some multicomponent alloys be processed in an applied magnetic field to tune atomic ordering?

Interface with other techniques

C. D. Woodgate	Warwick
Connections Between Magnetism and Preferred Atomic Arrangements in Multicomponent Alloys	13 of 14

Hutsepot

Acknowledgements Funding

- C.D.W. supported by a studentship within EPSRC-funded CDT: warwick.ac.uk/hetsys
- EPSRC (UK)
- NSF (US)
- DOE (US)

SPR-KKR People

. University of Warwick, UK

- Christopher D. Woodgate
- Julie B. Staunton

Northeastern University, USA

Laura H. Lewis

Our paper:

Woodgate, Hedlund, Lewis, Staunton,

Phys. Rev. Mater. 7 053801 (2023)

C. D. Woodgate

Connections Between Magnetism and Preferred Atomic Arrangements in Multicomponent Alloys

Warwick