Modelling the Effect of Alloying Additions on Atomic Arrangements and Subsequent Magnetic Anisotropy in $L1_0$ FeNi

Christopher D. Woodgate¹, Laura H. Lewis², Julie B. Staunton¹

¹University of Warwick, Coventry, UK ²Northeastern University, Boston, USA

23rd April 2024

Motivation 000

Fe₄Ni₃X

Why Do We Need New Magnets?

- Permanent magnets find myriad applications, particularly for "green" technoligies.
 - \implies increasing demand
- Existing 'gap' in performance range of permanent magnets for advanced applications¹.
 - \implies need materials to fill the 'gap'

Why Transition Metals?

 Most permanent magnets for *advanced* applications currently use rare-earth (RE) elements—provide large MAE.
 ⇒ constrained resources, environmental concerns

Christopher D. Woodgate¹, Laura H. Lewis², Julie B. Staunton¹

Designing Rare-Earth-Free Permanent Magnets

Motivation

Fe4Ni3*X* 0000

Recipe for a Good Permanent Magnet

- 1. Large M_S , high T_C .
 - \implies Use elements such as Fe, Co, Ni, Mn
- 2. Large magnetocrystalline anisotropy energy (MAE).
 - \Longrightarrow Uniaxial crystal structure, spin-orbit coupling, appropriate composition
- 3. Need to understand underlying electronic structure.
 - \Longrightarrow Treat atomic ordering and MAE in same framework

FeNi—Potential for High Anisotropy

- FeNi known to crystallise in L10 structure.
 - ✓ Large M_S
 - ✓ High T_C
 - Significant uniaxial anisotropy²
- Computationally predicted uniaxial MAE at T = 0:
 K_U = 0.95 MJm⁻³

²Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. **134** 163905 (2023).

Christopher D. Woodgate¹, Laura H. Lewis², Julie B. Staunton¹

¹Warwick (UK), ²Northeastern (US)

Designing Rare-Earth-Free Permanent Magnets

FeNi—Phase Behaviour

Model using DFT-based approach³⁴.

Paramagnetic			Ferromagnetic		
Material	$T_{\rm ord}$	L1 ₀ ?	Material	$T_{\rm ord}$	L1 ₀ ?
FeNi	175	No	FeNi	507	Yes

- Magnetic state crucial to L1₀ ordering.
- Good, but can we do better?
 - ▶ Higher *T*_{ord}?
 - Larger K_U ?

³Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. 7 053801 (2023)
 ⁴Woodgate, Lewis, Staunton, arXiv:2401.02809

Christopher D. Woodgate¹, Laura H. Lewis², Julie B. Staunton¹

Designing Rare-Earth-Free Permanent Magnets

6 of 12

Fe₄Ni₃X ●000

Fe₄Ni₃X—Naive Calculation

- Put additive X exclusively on Ni site and calculate magnetic anisotropy.
- Additive 1: X = Pt
 - MAE: 3.44 MJm⁻³
- Additive 2: X = AI
 - MAE: 1.66 MJm⁻³
- Looks good! Problem solved?

(FePt has large MAE, strong ordering tendencies)

- 1a site occupancy: Fe₁₀₀
 1d site occupancy: Ni₇₅X₂₅
- ⁴Woodgate, Lewis, Staunton, arXiv:2401.02809

Fe4Ni3*X* 0●00

Fe₄Ni₃X—Phase Behaviour

"All that glisters is not gold" - Shakespeare, Merchant of Venice

- Additive 1: X = Pt
 - L1₀-like ordering, but Pt-dominated.
 - Ferromagnetic state distinguishes Fe and Ni better.
- Additive 2: X = AI
 - Predicted ordering not even L10!
- Anisotropies of predicted orderings?

⁴Woodgate, Lewis, Staunton, arXiv:2401.02809

Motivation 000 Fe4Ni3*X* 00●0

Fe₄Ni₃X—'Holistic' Magnetic Anisotropies

- Addition of Pt, annealing in paramagnetic state:
 - 1a site occupancy: Fe₆₁Ni₃₉
 - Id site occupancy: Fe₃₉Ni₃₆Pt₂₅
 - Predicted MAE of 0.96 MJm⁻³

- Addition of Pt, annealing in ferromagnetic state:
 - 1a site occupancy: Fe₆₈Ni₃₂
 - Id site occupancy: Fe₃₂Ni₄₃Pt₂₅
 - Predicted MAE of 1.22 MJm⁻³

Fe₄Ni₃X 000●

Fe₄Ni₃Pt—'Ground-State' Structure

- Run Monte Carlo simulations—simulated annealing.
- Example: addition of Pt.
- Find a novel ground-state tetragonal structure.
- Anisotropy of compound is 2.77 MJm⁻³.

⁴Woodgate, Lewis, Staunton, arXiv:2401.02809

Summary

Take-Home Message 1

Additives to FeNi system have the potential to improve atomic ordering tendencies (uniaxial structures) and magnetic anisotropy.

Take-Home Message 2

HOWEVER, it is necessary to understand on which lattice site(s) additives prefer to sit.

Take-Home Message 3

Enlarged, multicomponent, compositional search space is needed, not just FeNi plus alloying addition.

11 of 12

Acknowledgements People

University of Warwick, UK

- Christopher D. Woodgate
- Julie B. Staunton

Northeastern University, USA

Laura H. Lewis

University of Oxford, UK

Christopher E. Patrick

Our Paper: arXiv:2401.02809 Funding

- C.D.W. supported by a studentship within EPSRC-funded CDT: warwick.ac.uk/hetsys
- ► EPSRC (UK)
- NSF (US)
- DOE (US)

EPSRC Pioneering research and skills