Short Range Order in High-Entropy Superalloys: First Principles Theory and Atomistic Modelling

Results

Our Approach

Christopher D. Woodgate¹, Julie B. Staunton¹

¹Department of Physics University of Warwick, Coventry, UK

MRS Fall Meeting 2022

Christopher D. Woodgate, Julie B. Staunton SRO in High-Entropy Superalloys

High Entropy Alloys

- ▶ High Entropy Alloy (HEA): *multiple* principle components.
- Solid solution stabilised by large "entropy of mixing"

$$TS = -k_B T \sum_{\alpha} c_{\alpha} \log c_{\alpha}.$$
 (1)

At what temperature will order emerge? What is the nature of order? Is order beneficial or detrimental?

Results 000

Refractory HEAs

- Prototypical BCC HEAs.
- Typically V, Nb, Mo, Ta, W.

 Apply the modelling techniques used successfully on Ni-based HEAs¹ to refractory systems.

¹C. D. Woodgate, J. B. Staunton, Phys. Rev. B 105 115124 (2022)

Our Description

- On lattice
- Specify configuration by $\{\xi_{i\alpha}\}$
- Interested in the average value of these:

$$c_{i\alpha} \equiv \langle \xi_{i\alpha} \rangle$$

Perturb high temperature, homogeneous state

$$c_{i\alpha} = c_{\alpha} + \delta c_{i\alpha}$$

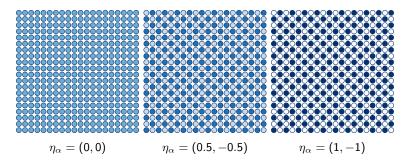
and see what favourable correlations are.

Refractory HEAs 00	Our Approach ○●○○	Results 000	Summary O

Concentration Waves

$$c_{i\alpha} = c_{\alpha} + \eta_{\alpha} \frac{1}{4} \left(e^{i\mathbf{q}\cdot\mathbf{R}_{i}} + e^{-i\mathbf{q}\cdot\mathbf{R}_{i}} \right), \quad \mathbf{q} = \left(\frac{1}{2}, \frac{1}{2} \right)$$

$$\eta_{\alpha} = (\eta_A, \eta_B)$$



 Refractory HEAs
 Our Approach
 Results
 Summary

 Oo
 O
 O
 O

- Evaluate cost of fluctuations ab initio via DFT, using KKR-CPA and a Landau-type theory^{bc}.
- Mean-field free energy:

$$G = \beta^{-1} \sum_{i\alpha} c_{i\alpha} \log c_{i\alpha} - \sum_{i\alpha}' \nu_{\alpha} c_{i\alpha} + \langle \Omega_{\mathsf{el}} \rangle_0 [\{c_{i\alpha}\}]$$

Important quantities:

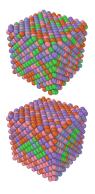
$$\frac{\partial^2 G}{\partial c_{i\alpha} \partial c_{j\alpha'}} \rightsquigarrow \Psi_{\alpha\alpha'}^{-1}(\mathbf{q}), \rightsquigarrow \langle \xi_{i\alpha} \xi_{j\alpha'} \rangle - \langle \xi_{i\alpha} \rangle \langle \xi_{j\alpha'} \rangle$$

^bKhan, Staunton, Stocks, Phys. Rev. B **93** 054206 (2016) ^cGyorffy, Stocks, Phys. Rev. Lett. **50**, 374 (1983)

Energetics

$$H(\{\xi_{i\alpha}\}) = \frac{1}{2} \sum_{\substack{i\alpha\\j\alpha'}} V_{i\alpha;j\alpha'} \xi_{i\alpha} \xi_{j\beta} + \sum_{i\alpha} \nu_{\alpha} \xi_{i\alpha}$$

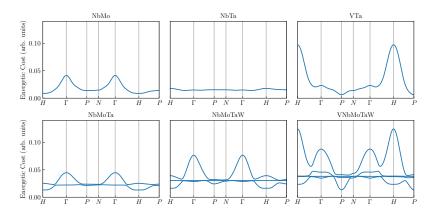
• If H as above,
$$V_{ilpha;jlpha'}$$
 are exactly $-S^{(2)}_{ilpha;jlpha'}$.



Refractory HEAs	Our Approach	Results	Summary
00	0000	●00	O

Linear Response

Eigenvalues of $\Psi_{\alpha\alpha'}^{-1}(\mathbf{q})$ around IBZ at 1200K.⁴



⁴Woodgate, Staunton, arXiv:2211.09911

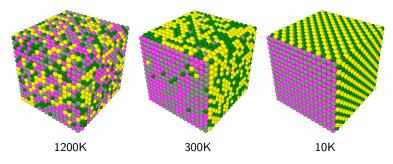
Christopher D. Woodgate, Julie B. Staunton

Our Approad

Results 000

Atomistic Simulations

Visualised NbMoTaW configurations.⁴

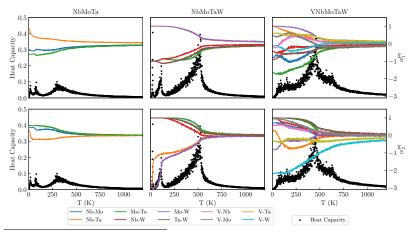


⁴Woodgate, Staunton, arXiv:2211.09911

Christopher D. Woodgate, Julie B. Staunton

Atomistic Simulations

Warren-Cowley SRO Parameters.⁴



⁴Woodgate, Staunton, arXiv:2211.09911

Christopher D. Woodgate, Julie B. Staunton

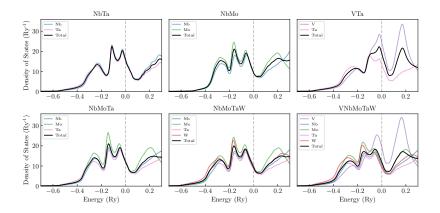
Summary

- B2-like ordering successfully predicted for NbMoTaW.
- SRO in VNbMoTaW dominated by V.
- Insight into physical origins of order.
- Method obtains results comparable with conventional techniques for a fraction of the computational cost.
- Woodgate, Staunton, arXiv:2211.09911

Acknowledgements

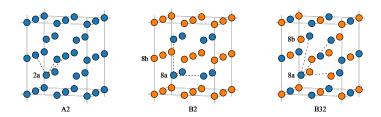
 I am funded by a studentship in the UK EPSRC-supported PG training centre in Modelling of Heterogeneous Systems at the University of Warwick, UK. warwick.ac.uk/hetsys

Density of States



Christopher D. Woodgate, Julie B. Staunton

BCC Ordered Structures



Christopher D. Woodgate, Julie B. Staunton

Linear Response

Material	$T_{\rm us}(K)$	k_{us}	δc_1	δc_2	δc_3	δc_4	δc_5
NbMoTa	511	$\{0, 0, 1\}$	-0.406	0.816	-0.410		
NbMoTaW	559	$\{0, 0, 1\}$	-0.383	0.594	-0.595	0.383	
VNbMoTaW	742	$\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\}$	-0.824	0.012	0.085	0.252	0.500

Fitting to Pairwise Interaction

We approximate the true interaction by fitting to a Bragg-Williams-like Hamiltonian. That is, we approximate the *ab initio* data by $V_{\alpha\beta}(\mathbf{q})$, where

$$V_{\alpha\beta}(\mathbf{q}) = V_{\alpha\beta}^{0} + V_{\alpha\beta}^{1} \left(\sum_{\{\mathbf{R}_i\}_1} e^{i\mathbf{q}\cdot\mathbf{R}_i} \right) + \dots + V_{\alpha\beta}^{N} \left(\sum_{\{\mathbf{R}_i\}_N} e^{i\mathbf{q}\cdot\mathbf{R}_i} \right),$$
(2)

a constant plus a nearest-neighbour term, next-nearest neighbour term, etc.

Ab Initio Theory

Expand free energy around homogeneous reference state:

$$\Omega(\{\bar{c}_{i\alpha}\}) = \Omega(\{c_{\alpha}\}) + \sum_{i\alpha} \frac{\partial\Omega}{\partial\bar{c}_{i\alpha}}\Big|_{\{c_{\alpha}\}} \Delta\bar{c}_{i\alpha} + \frac{1}{2} \sum_{i\alpha;j\alpha'} \frac{\partial^{2}\Omega}{\partial\bar{c}_{i\alpha}\partial\bar{c}_{j\alpha'}}\Big|_{\{c_{\alpha}\}} \Delta\bar{c}_{i\alpha}\Delta\bar{c}_{j\alpha'} + \dots$$
(3)

Ab Initio Theory

Important bit is second-order term.

$$\delta\Omega = \frac{1}{2} \sum_{i,j} \sum_{\alpha,\alpha'} \Delta \bar{c}_{i\alpha} [\beta^{-1} C_{\alpha,\alpha'}^{-1} - S_{i\alpha,j\alpha'}^{(2)}] \Delta \bar{c}_{j\alpha'}, \qquad (4)$$

where
$$-rac{\partial^2 \langle \Omega_{\mathsf{el}}
angle_0}{\partial ar{c}_{ilpha \partial} ar{c}_{jlpha'}} \equiv S^{(2)}_{ilpha;jlpha'}$$
, and $C^{-1}_{lpha lpha'} = rac{\delta_{lpha lpha'}}{c_{lpha}}$.

Ab Initio Theory

Or, in reciprocal space,

$$\delta\Omega = \frac{1}{2} \sum_{\mathbf{k}} \sum_{\alpha,\alpha'} \Delta \bar{c}_{\alpha}(\mathbf{k}) [\beta^{-1} C_{\alpha\alpha'}^{-1} - S_{\alpha\alpha'}^{(2)}(\mathbf{k})] \Delta \bar{c}_{\alpha'}(\mathbf{k}).$$
(5)