A (Spin) Polarised World: Multiscale Modelling of Magnetic Materials for Energy Applications

Christopher D. Woodgate, PhD

University of Warwick, Coventry, UK

18/04/2024

C. D. Woodgate A (Spin) Polarised World

About Me

C. D. Woodgate A (Spin) Polarised World

Warwick 2 of 28

About Me

- Undergraduate (2015-2019):
 - BSc MMathPhys, Mathematics and Physics, U. Warwick, UK

C. D. Woodgate A (Spin) Polarised World

- Undergraduate (2015-2019):
 - BSc MMathPhys, Mathematics and Physics, U. Warwick, UK
- Postgraduate (2019-2023):
 - PGDip, Modelling of Heterogeneous Systems, U. Warwick, UK
 - PhD, Modelling of Heterogeneous Systems, U. Warwick, UK

C.	D. W	/oodgate	
A	(Spin) Polarised	World

Warwick

- Postdoc (2023-Present):
 - Theory Group, Department of Physics, U. Warwick.
 - Collaborating with Nanomagnetism Group, NU.

C.	D. W	/oodgate	
A	(Spin) Polarised	World

- Postdoc (2023-Present):
 - Theory Group, Department of Physics, U. Warwick.
 - Collaborating with Nanomagnetism Group, NU.
- Hobbies and Interests:

- Postdoc (2023-Present):
 - Theory Group, Department of Physics, U. Warwick.
 - Collaborating with Nanomagnetism Group, NU.
- Hobbies and Interests:
 - English-style 'change-ringing'.

- Postdoc (2023-Present):
 - Theory Group, Department of Physics, U. Warwick.
 - Collaborating with Nanomagnetism Group, NU.
- Hobbies and Interests:
 - English-style 'change-ringing'.
 - Archery

Talk Outline

C.	D. W	/oodgate	
A	(Spin) Polarised	World

111	20	1110	
- V V	d١	/vic	ı٨.

Talk Outline

Work at the level of atoms and electrons, but aim to extract *macroscopic* quantities of interest.

Talk Outline

Work at the level of atoms and electrons, but aim to extract *macroscopic* quantities of interest.

C.	D. \	No	odgate	
A	(Spi	n)	Polarised	World

Talk Outline

Work at the level of atoms and electrons, but aim to extract *macroscopic* quantities of interest.

- 1. $L1_0$ FeNi
 - ► Atomic arrangements → magnetic properties

Talk Outline

Work at the level of atoms and electrons, but aim to extract *macroscopic* quantities of interest.

- 1. $L1_0$ FeNi
 - ► Atomic arrangements → magnetic properties
- 2. High-entropy alloys
 - ► Magnetic state → atomic arrangements

Talk Outline

Work at the level of atoms and electrons, but aim to extract *macroscopic* quantities of interest.

- $1. \ L1_0 \ FeNi$
 - ► Atomic arrangements → magnetic properties
- 2. High-entropy alloys
 - Magnetic state \rightarrow atomic arrangements
- 3. Interatomic potentials
 - Machine learning \rightarrow predictive modelling

L1₀ FeNi ●00000000 High-Entropy Alloys

ML for Materials Modelling

Warwick 5 of 28

Story 1: L1₀ FeNi

C	D. Woodgate
A	(Spin) Polarised World

Background: Societal Need for Magnets

¹Coey, Scr. Mater. 67 524-529 3-8 (2012)

C. D. Woodgate

A (Spin) Polarised World

Background: Societal Need for Magnets

- Permanent magnets find myriad applications, particularly for "green" technoligies.
 - \Longrightarrow increasing demand

¹Coey, Scr. Mater. 67 524-529 3-8 (2012)

Background: Societal Need for Magnets

Permanent magnets find myriad applications, particularly for "green" technoligies.

High-Entropy Allovs

\Longrightarrow increasing demand

L1n FeNi

0000000

 Existing 'gap' in performance range of permanent magnets for advanced applications¹.

 \Longrightarrow need materials to fill the 'gap'

¹Coey, Scr. Mater. 67 524-529 3-8 (2012)

Background: Societal Need for Magnets

Permanent magnets find myriad applications, particularly for "green" technoligies.

High-Entropy Allovs

\implies increasing demand

L1n FeNi

0000000

 Existing 'gap' in performance range of permanent magnets for advanced applications¹.

 \implies need materials to fill the 'gap'

¹Coey, Scr. Mater. 67 524-529 3-8 (2012)

Background: Rare-Earth Crisis

¹Coey, Scr. Mater. 67 524-529 3-8 (2012)

C. D. Woodgate

A (Spin) Polarised World

Warwick

Background: Rare-Earth Crisis

 Most permanent magnets for *advanced* applications currently use rare-earth (RE) elements¹—provide large MAE.
⇒ constrained resources, environmental concerns

¹Coey, Scr. Mater. 67 524-529 3-8 (2012)

C. D. Woodgate

A (Spin) Polarised World

Warwick

Background: Rare-Earth Crisis

Most permanent magnets for *advanced* applications currently use rare-earth (RE) elements¹—provide large MAE.
⇒ constrained resources, environmental concerns

¹Coey, Scr. Mater. 67 524-529 3-8 (2012)

C. D. Woodgate

A (Spin) Polarised World

Background: Why FeNi?

 2 Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. **134** 163905 (2023). 3 Woodgate, Lewis, Staunton, arXiv:2401.02809 (2023).

C. D. Woodgate

A (Spin) Polarised World

Warwick

Background: Why FeNi?

Made entirely from abundant elements.

 2 Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. **134** 163905 (2023). 3 Woodgate, Lewis, Staunton, arXiv:2401.02809 (2023).

Background: Why FeNi?

- Made entirely from abundant elements.
- High saturation magnetisation²³.

 $\label{eq:Woodgate} \begin{array}{l} ^{2}\text{Woodgate}, \mbox{ Patrick, Lewis, Staunton, J. Appl. Phys. 134 163905 (2023).} \\ \overline{^{3}\text{Woodgate}, \mbox{ Lewis, Staunton, arXiv:2401.02809 (2023).} \end{array}$

Background: Why FeNi?

- Made entirely from abundant elements.
- ▶ High saturation magnetisation²³.
- ► High Curie temperature².

 $\label{eq:woodgate} \begin{array}{l} ^{2}\text{Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. 134 163905 (2023).} \\ ^{3}\overline{\text{Woodgate, Lewis, Staunton, arXiv:2401.02809 (2023).}} \end{array}$

Background: Why FeNi?

- Made entirely from abundant elements.
- High saturation magnetisation²³.
- ► High Curie temperature².
- Reports of good magnetocrystalline anisotropy.

 2 Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. **134** 163905 (2023). 3 Woodgate, Lewis, Staunton, arXiv:2401.02809 (2023).

Challenges: Formation of L1₀ Phase

 2 Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. **134** 163905 (2023). 3 Woodgate, Lewis, Staunton, arXiv:2401.02809 (2023).

C. D. Woodgate

A (Spin) Polarised World

Warwick

Challenges: Formation of L1₀ Phase

 As-cast, get atomically disordered A1 phase²³.

 2 Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. **134** 163905 (2023). 3 Woodgate, Lewis, Staunton, arXiv:2401.02809 (2023).

Challenges: Formation of $L1_0$ Phase

- As-cast, get atomically disordered A1 phase²³.
- ▶ Have to work *very* hard to form L1₀.

 $\frac{^{2}\text{Woodgate}}{^{3}\text{Woodgate}}$, Patrick, Lewis, Staunton, J. Appl. Phys. **134** 163905 (2023). $\frac{^{3}\text{Woodgate}}{^{3}\text{Woodgate}}$, Lewis, Staunton, arXiv:2401.02809 (2023).

Challenges: Formation of $L1_0$ Phase

- As-cast, get atomically disordered A1 phase²³.
- ► Have to work *very* hard to form L1₀.
- Low atomic ordering temperature, sluggish kinetics.

Challenges: Formation of $L1_0$ Phase

- As-cast, get atomically disordered A1 phase²³.
- Have to work very hard to form L1₀.
- Low atomic ordering temperature, sluggish kinetics.
- If we don't wait anneal for long enough, get partial order.

²Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. **134** 163905 (2023). ³Woodgate, Lewis, Staunton, arXiv:2401.02809 (2023).

Connecting Modelling with Experiment: Atomic Ordering

 2 Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. **134** 163905 (2023). 3 Woodgate, Lewis, Staunton, arXiv:2401.02809 (2023).

C. D. Woodgate

A (Spin) Polarised World

Connecting Modelling with Experiment: Atomic Ordering

Relativistic density functional theory (DFT).

 2 Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. **134** 163905 (2023). 3 Woodgate, Lewis, Staunton, arXiv:2401.02809 (2023).

C. D. Woodgate

A (Spin) Polarised World

Connecting Modelling with Experiment: Atomic Ordering

- Relativistic density functional theory (DFT).
- Partial ordering coherent potential approximation (CPA).

 2 Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. **134** 163905 (2023). 3 Woodgate, Lewis, Staunton, arXiv:2401.02809 (2023).
L1₀ FeNi 00000●00

Connecting Modelling with Experiment: Atomic Ordering

- Relativistic density functional theory (DFT).
- Partial ordering coherent potential approximation (CPA).

C. D. Woodgate		Warwick
A (Spin) Polarised World		10 of 28

L1₀ 000

Connecting Modelling with Experiment: Atomic Ordering

- Relativistic density functional theory (DFT).
- Partial ordering coherent potential approximation (CPA).

Maximal order needed for good magnetic properties.

High-Entropy Alloys

ML for Materials Modelling

Summary 00

Connecting Modelling with Experiment: Finite Temperature Effects

 2 Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. **134** 163905 (2023). 3 Woodgate, Lewis, Staunton, arXiv:2401.02809 (2023).

C. D. Woodgate

A (Spin) Polarised World

Warwick

Connecting Modelling with Experiment: Finite Temperature Effects

Disordered local moment (DLM) picture.

 2 Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. **134** 163905 (2023). 3 Woodgate, Lewis, Staunton, arXiv:2401.02809 (2023).

C. D. Woodgate

A (Spin) Polarised World

L1₀ FeNi 00000000 High-Entropy Alloys

ML for Materials Modelling

Summary 00

Connecting Modelling with Experiment: Finite Temperature Effects

Disordered local moment (DLM) picture.

²Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. **134** 163905 (2023).
 ³Woodgate, Lewis, Staunton, arXiv:2401.02809 (2023).

		_	
C. D.	vv0	000	igate

A (Spin) Polarised World

Connecting Modelling with Experiment: Finite Temperature Effects

Disordered local moment (DLM) picture.

Finite-temperature performance is excellent.

²Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. **134** 163905 (2023). ³Woodgate, Lewis, Staunton, arXiv:2401.02809 (2023).

Take-Home

C. D. Woodgate	Warwick
A (Spin) Polarised World	12 of 28

Take-Home

Story 1: L1₀ FeNi

Behaviour at the *atomic* scale affects *macroscopic* materials properties. Crucial for magnet design.

C.	D. W	/oodgate	
A	(Spin) Polarised	World

Warwick 12 of 28

Story 2: Magnetism in High-Entropy Alloys

C.	D. Wo	oodgate	
Ą	(Spin)	Polarised	World

V	Va	ir	w	ic	:k	

Warwick 14 of 28

What is a High-Entropy Alloy?

C. D. Woodgate		
A (Spin) Polarised World		

What is a High-Entropy Alloy?

 Alloy with 4, 5, 6+ elements in near-equal ratios, e.g. CrMnFeCoNi, CrCoNi, NbMoTaW.

C. D. Woodgate	Warwick
A (Spin) Polarised World	14 of 28

What is a High-Entropy Alloy?

- Alloy with 4, 5, 6+ elements in near-equal ratios, e.g. CrMnFeCoNi, CrCoNi, NbMoTaW.
- HEAs: solid solution stabilised by large "entropy of mixing"

$$TS = -k_B T \sum_{\alpha} c_{\alpha} \log c_{\alpha}.$$
 (1)

C. D. Woodgate	Warwick
A (Spin) Polarised World	14 of 28

Introduction L10 FeNi High-Entropy Alloys ML for Materials Modelling 000 0000000 0€00000 0000000 0000000

What is a High-Entropy Alloy?

- Alloy with 4, 5, 6+ elements in near-equal ratios, e.g. CrMnFeCoNi, CrCoNi, NbMoTaW.
- HEAs: solid solution stabilised by large "entropy of mixing"

$$TS = -k_B T \sum_{\alpha} c_{\alpha} \log c_{\alpha}.$$
 (1)

At what temperature will order emerge? What is the nature of order? Short-range? Long-range? Materials properties?

C. D. Woodgate	Warwick
A (Spin) Polarised World	14 of 28

⁴Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022).

⁵Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023).

C. D. Woodgate

A (Spin) Polarised World

 Prototypical FCC high entropy alloy is the "Cantor alloy" -CrMnFeCoNi.

⁴Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022).

⁵Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023).

 Prototypical FCC high entropy alloy is the "Cantor alloy" -CrMnFeCoNi.

⁴Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022).

⁵Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023).

 Prototypical FCC high entropy alloy is the "Cantor alloy" -CrMnFeCoNi.

Up to five mid- to late- 3d transition metals: magnetism matters.

⁴Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022).

⁵Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023).

How should we model the magnetic state?

⁴Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022).

⁵Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023).

How should we model the magnetic state?

Case study, CrCoNi.

⁴Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022).

⁵Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023).

Summary

How should we model the magnetic state?

Case study, CrCoNi.

⁴Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022).

⁵Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023).

C. D. Woodgate

A (Spin) Polarised World

Summary

How should we model the magnetic state?

Case study, CrCoNi.

Cr aligns antiparallel, Ni and Co parallel with total moment.

⁴Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022).

⁵Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023).

How should we model the magnetic state?

⁴Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022).

⁵Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023).

C. D. Woodgate

A (Spin) Polarised World

How should we model the magnetic state?

▶ DFT calculations can tell us about *electronic structure*.

⁴Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022).

⁵Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023).

L10 Fe

High-Entropy Alloys

ML for Materials Modelling

Summary

How should we model the magnetic state?

▶ DFT calculations can tell us about *electronic structure*.

⁴Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022).

⁵Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023).

C. D. Woodgate	Warwick
A (Spin) Polarised World	17 of 28

L10 Fe

High-Entropy Alloys

ML for Materials Modelling

Summary

How should we model the magnetic state?

▶ DFT calculations can tell us about *electronic structure*.

Different magnetic state, different bandstructure.

⁴Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022).

⁵Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023).

How does the magnetic state affect atomic ordering?

⁴Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022).

⁵Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023).

How does the magnetic state affect atomic ordering?

⁴Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022).

⁵Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023).

C. D. Woodgate

A (Spin) Polarised World

How does the magnetic state affect atomic ordering?

Different predicted chemical orderings based on magnetic state! Can we observe this experimentally in some systems?

⁴Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022).

⁵Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023).

Take-Home

C. D. Woodgate	
A (Spin) Polarised World	

Warwick

Take-Home

Story 2: Magnetism in High-Entropy Alloys

Magnetism (and magnetic state) affects how atoms preferentially arrange themselves. Can we tune materials properties?

C.	D. V	Voodgate	
A	(Spir	n) Polarise	d World

Story 3: Machine-Learning for Materials Modelling

PHYSICAL REVIEW MATERIALS 8, 033804 (2024)

Collinear-spin machine learned interatomic potential for Fe7Cr2Ni alloy

Lakshmi Shenoy e,^{1,*} Christopher D. Woodgate e,² Julie B. Staunton e,² Albert P. Bartók e,^{1,2} Charlotte S. Becquart e,³ Christophe Domain e,⁴ and James R. Kermode e¹
¹Warwick Centre for Predictive Modelling, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom ²Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
³Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - United Materiaux et Transformations, F-59000 Lille, France ⁴Electricite de France, EDF Recherche et Developpement, Departement Materiaux et Mecanique des Composants, Les Renardieres, F-77250 Moret sur Loing, France

(Received 4 October 2023; accepted 27 February 2024; published 22 March 2024)

C.	D. W	/oodgate	
A	(Spin) Polarised	Worl

Example Application: Reactor Pressure Vessels (RPVs)

⁵Shenoy, Woodgate, *et al.*, Phys. Rev. Mater. **8** 033804 (2024).

C. D. Woodgate	Warwick
A (Spin) Polarised World	21 of 28

Example Application: Reactor Pressure Vessels (RPVs)

Prototypical austenitic stainless steel: Fe₇₀Cr₂₀Ni₁₀.

⁵Shenoy, Woodgate, *et al.*, Phys. Rev. Mater. **8** 033804 (2024).

C. D. Woodgate	Warwick
A (Spin) Polarised World	21 of 28

Example Application: Reactor Pressure Vessels (RPVs)

- Prototypical austenitic stainless steel: Fe₇₀Cr₂₀Ni₁₀.
- Used everywhere, including in RPVs.

⁵Shenoy, Woodgate, *et al.*, Phys. Rev. Mater. **8** 033804 (2024).

C. D. Woodgate	Warwick
A (Spin) Polarised World	21 of 28

Example Application: Reactor Pressure Vessels (RPVs)

- Prototypical austenitic stainless steel: Fe₇₀Cr₂₀Ni₁₀.
- Used everywhere, including in RPVs.
- Need to understand how this material ages to be confident of reactor safety.

⁵Shenoy, Woodgate, *et al.*, Phys. Rev. Mater. **8** 033804 (2024).

Challenges and Opportunities

⁶Kermode, *et al.*, Nature **455** 1224 (2008).

C. D. Woodgate

A (Spin) Polarised World

Warwick
Challenges and Opportunities

▶ DFT is *great* at modelling (typically) a few hundred atoms.

⁶Kermode, *et al.*, Nature **455** 1224 (2008).

C. D. Woodgate

A (Spin) Polarised World

Warwick

Challenges and Opportunities

- ▶ DFT is *great* at modelling (typically) a few hundred atoms.
- But, very computationally demanding.

C. D. Woodgate

A (Spin) Polarised World

⁶Kermode, *et al.*, Nature **455** 1224 (2008).

Challenges and Opportunities

- ▶ DFT is *great* at modelling (typically) a few hundred atoms.
- But, very computationally demanding.
- To model phenomena like fracture, need more atoms, lots of 'snapshots', but still need DFT accuracy⁶.

⁶Kermode, *et al.*, Nature **455** 1224 (2008).

C. D. Woodgate	Warwick
A (Spin) Polarised World	22 of 28

Challenges and Opportunities

- ▶ DFT is *great* at modelling (typically) a few hundred atoms.
- But, very computationally demanding.
- To model phenomena like fracture, need more atoms, lots of 'snapshots', but still need DFT accuracy⁶.

Question: Can machine-learning help?

C. D. Woodgate

⁶Kermode, *et al.*, Nature **455** 1224 (2008).

Machine-Learned Interatomic Potentials (MLIPs)

C. D. Woodgate	Warwick
A (Spin) Polarised World	23 of 28

Machine-Learned Interatomic Potentials (MLIPs)

▶ Use 'descriptors' to represent local environment of an atom.

C. D. Woodgate	Warwick
A (Spin) Polarised World	23 of 28

Machine-Learned Interatomic Potentials (MLIPs)

- ▶ Use 'descriptors' to represent local environment of an atom.
- Train off a few hundred small(ish) DFT calculations.

C. D. Woodgate	Warwick
A (Spin) Polarised World	23 of 28

L1₀ I

Machine-Learned Interatomic Potentials (MLIPs)

- ▶ Use 'descriptors' to represent local environment of an atom.
- Train off a few hundred small(ish) DFT calculations.
- Model which takes in descriptors, returns energies and forces⁷.

C. D. Woodgate	Warwick
A (Spin) Polarised World	23 of 28

Machine-Learned Interatomic Potentials (MLIPs)

- ▶ Use 'descriptors' to represent local environment of an atom.
- Train off a few hundred small(ish) DFT calculations.
- Model which takes in descriptors, returns energies and forces⁷.

▶ We use the 'Gaussian Approximation Potential' (GAP).

<u> </u>		W/n n d moto	
C.	υ.	woodgate	

Handling Magnetic Elements: Fe, Cr, Ni?

C. D. Woodgate	Warwick
A (Spin) Polarised World	24 of 28

Where I have magnetic elements, need to think about this!

⁵Shenoy, Woodgate, *et al.*, Phys. Rev. Mater. **8** 033804 (2024).

C. D. Woodgate Warwick A (Spin) Polarised World 24 of 28

- Where I have magnetic elements, need to think about this!
- ► *E.g.* in Fe₇₀Cr₂₀Ni₁₀, Fe couples antiferromagnetically.

C. D. Woodgate	Warwick
A (Spin) Polarised World	24 of 28

- Where I have magnetic elements, need to think about this!
- ► *E.g.* in Fe₇₀Cr₂₀Ni₁₀, Fe couples antiferromagnetically.

C. D. Woodgate	Warwick
A (Spin) Polarised World	24 of 28

- Where I have magnetic elements, need to think about this!
- ► *E.g.* in Fe₇₀Cr₂₀Ni₁₀, Fe couples antiferromagnetically.

Solution: treat different 'spins' as different 'chemical' species.

⁵Shenoy, Woodgate, *et al.*, Phys. Rev. Mater. **8** 033804 (2024).

C. D. Woodgate

One Potential to Rule Them All?

⁵Shenoy, Woodgate, *et al.*, Phys. Rev. Mater. **8** 033804 (2024).

C. D. Woodgate Warwick A (Spin) Polarised World 25 of 28

One Potential to Rule Them All?

Potential should be transferrable.

C. D. Woodgate	Warwick
A (Spin) Polarised World	25 of 28

One Potential to Rule Them All?

Potential should be transferrable.

FIG. 4. (a) Lattice constants (a), (b), (c) averaged over 400 configurations predicted by EAM, GAP, and spin GAP for the AFM state,

C. D. Woodgate	Warwick
A (Spin) Polarised World	25 of 28

One Potential to Rule Them All?

Potential should be transferrable.

FIG. 4. (a) Lattice constants (a), (b), (c) averaged over 400 configurations predicted by EAM, GAP, and spin GAP for the AFM state,

'Spin GAP' does better than most.

⁵Shenoy, Woodgate, *et al.*, Phys. Rev. Mater. **8** 033804 (2024).

C. D. Woodgate

A (Spin) Polarised World

Warwick 25 of 28

Take-Home

C. D. Woodgate	Warwic
A (Spin) Polarised World	26 of 2

Take-Home

Story 3: Machine-Learning for Materials Modelling

Machine-learned interatomic potentials can help us model magnetic materials more accurately. Predictive modelling.

C.	D. V	Voodgate	
A	(Spir	n) Polarise	d World

Warwick

C. D. Woodgate	Warwick
A (Spin) Polarised World	27 of 28

Introduction	L1 ₀ FeNi 00000000	High-Entropy Alloys	ML for Materials Modelling	Summary ●0

Story 1: L1₀ FeNi

Microstructure at the *atomic* scale affects *macroscopic* materials properties. Crucial for magnet design.

C. D. Woodgate	Warwick
A (Spin) Polarised World	27 of 28

Story 1: L1₀ FeNi

Microstructure at the *atomic* scale affects *macroscopic* materials properties. Crucial for magnet design.

Story 2: Magnetism in High-Entropy Alloys

Magnetism (and magnetic state) affects how atoms preferentially arrange themselves. Can we tune materials properties?

Story 1: L1₀ FeNi

Microstructure at the *atomic* scale affects *macroscopic* materials properties. Crucial for magnet design.

Story 2: Magnetism in High-Entropy Alloys

Magnetism (and magnetic state) affects how atoms preferentially arrange themselves. Can we tune materials properties?

Story 3: Machine-Learning for Materials Modelling

Machine-learned interatomic potentials can help us model magnetic materials more accurately. Predictive modelling.

. D. Woodgate	Warwick
(Spin) Polarised World	27 of 28

Acknowledgements

Funding

- C.D.W. supported by a studentship within
 EPSRC-funded CDT: warwick.ac.uk/hetsys
- EPSRC (UK)
- NSF (US)
- DOE (US)

People

University of Warwick, UK

- Lakshmi Shenoy
- James R. Kermode
- Albert P. Bartók
- George A. Marchant
- Julie B. Staunton

Northeastern University, USA

Laura H. Lewis

University of Oxford, UK

Christopher E. Patrick

EPSRC Pioneering research and skills