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» Elemental analysis is a modern usage of
negative muons

» Negative muons are implanted into a material
and are captured by the atoms of the
composing elements

» The initial momentum of the muon beam is
tuneable, and so the depth of penetration can
be varied

» As the muon transitions down the energy levels

of the atom, X-rays are released, which are
measured by detectors
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» The Akylas' cascade code was published in 1977, and is still used to this day
» This code calculate the intensities of all possible X-ray transitions, with free
parameters chosen by the user

» What functionality does it have?
» Uses non-relativistic, hydrogen-like radial wavefunctions for both
electrons and muon
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» For a hydrogen-like atom, separate the total wavefunction into radial and angular
parts
len,l (7'7 07 ¢) = Rn,l (T)}/l,m(ea <f>)

» Bound muonic radial solutions are analytic, taking the familiar form of

Z(n—1-1)!

Bu(r) =\ | Czaim T D13

— 4 21+1
e PP L2 (p)

» Similarly, we have analytic solutions for continuum electrons

T+ 1 —y)|

/m 1y = . ,
R@Q(TQ) = f2l+lkl+gelkr2rl2612 Fl(l + 1 —1y; 20 + 2; *21]457“2) (2l n 1)‘

» y is a dimensionless parameter which is inversely proportional to the kinetic
energy of the emitted electron; larger y means a larger rate
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» The Akylas' cascade code was published in 1977, and is still used to this day
» What functionality does it have?

» Uses non-relativistic, hydrogen-like radial wavefunctions for both electrons
and muon
» Calculates radiative transitions up to and including octupole
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Radiative Transitions
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na, la, jo E = hw » We only consider the electric transition multipole
operator, as magnetic multipoles proceed
significantly slower

L
r|Z
M) = (M2) v
au
I where L is the multipolarity of the transition
n
L4, » Total radiative rate can be computed by computing
Radiative Transition the matrix element:
8m(L+1) 1 fajw\2L+t
LM _ 2 ( 0 ) E [\ |2
B =Tl + D)I2h\ Ze [{FIMEni) |
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» The Akylas' cascade code was published in 1977, and is still used to this day

» This code can calculate the intensities of the X-ray transitions, with parameters
chosen by the user
» What functionality does it have?
> Uses non-relativistic, hydrogen-like radial wavefunctions for both electrons
and muon

» Calculates radiative transitions up to and including octupole
» Calculates Auger transitions up to and including octupole

V. R. Akylas and P. Vogel, Muonic Atom Cascade Program, Computer Physics Communications
15, 291 (1978). 8/18
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» In the non-relativistic scheme, product
wavefunctions can be used to find the Auger rate
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» Penetration occurs where the muon and electronic
Auger Transition orbits overlap, and this is approximated by fitting
to a simpler function
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» The Akylas' cascade code was published in 1977, and is still used to this day

» This code can calculate the intensities of the X-ray transitions, with parameters
chosen by the user

» What functionality does it have?

» Uses non-relativistic, hydrogen-like radial wavefunctions for both electrons
and muon

» Calculates radiative transitions up to and including octupole

» Calculates Auger transitions up to and including octupole

» Formally treats K electron refilling, and approximately treats L and M
refilling

V. R. Akylas and P. Vogel, Muonic Atom Cascade Program, Computer Physics Communications
15, 291 (1978). 10/18



Electron Refilling ' '

WARWICK

Vacuum

L LI » As the Auger transitions occur, empty

| \/ I electron subshells are left behind
@O@é@QLz , L3

M Ll
K

!P. Vogel, Atomic Aftereffects and the Line Shape of Muonic X Rays, Phys. Rev. A 8, 2292 (1973). 11/1s

O O

/




Electron Refilling ' '

WARWICK

Vacuum

L LI » As the Auger transitions occur, empty
electron subshells are left behind

» K electron refilling is formally treated!
L2 , L3 through perturbation theory

M Ll
K

!P. Vogel, Atomic Aftereffects and the Line Shape of Muonic X Rays, Phys. Rev. A 8, 2292 (1973). 11/1s

O O

/




Electron Refilling ' '

WARWICK

Vacuum

L LI » As the Auger transitions occur, empty
electron subshells are left behind

» K electron refilling is formally treated!
L2 , L3 through perturbation theory

~ » K electron has a user specified refilling
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K
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Vacuum

v

As the Auger transitions occur, empty
electron subshells are left behind

K electron refilling is formally treated!
L L through perturbation theory
2y, 43

K electron has a user specified refilling

v

v

() O L 1 width
» L and M electrons are either never
refilled, or refilled instantly
2 K
_/ _/

!P. Vogel, Atomic Aftereffects and the Line Shape of Muonic X Rays, Phys. Rev. A 8, 2292 (1973). 11/1s
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» The Akylas' cascade code was published in 1977, and is still used to this day

» This code can calculate the intensities of the X-ray transitions, with parameters
chosen by the user

» What functionality does it have?

> Uses non-relativistic, hydrogen-like radial wavefunctions for both electrons
and muon
Calculates radiative transitions up to and including octupole
Calculates Auger transitions up to and including octupole
Formally treats K electron refilling, and approximately treats L and M refilling
Two different built in I-distributions, with custom distribution allowed
as input

vV vyYyewy

V. R. Akylas and P. Vogel, Muonic Atom Cascade Program, Computer Physics Communications
15, 291 (1978). 12/18
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» This set of optimized parameter(s) gives us a function which we would like to
sample
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The I-distribution is the distribution across angular momentum subshells of the

population of the muon

20+1 Statistical
P(l) = ¢ (2l +1)exp(al) Modified statistical
1+ al + bl? Quadratic

Free parameters need to be chosen in some way; use a least squares regression
using available experimental data:

No/r oo\
A — argmin calc,\; exp)

7

This set of optimized parameter(s) gives us a function which we would like to

sample

Gaussian Processes can allow us to take samples using the fitted distribution as

the mean 13/18
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» A Gaussian Process is essentially

20 45 . . o
] " el s:f\mplln.g a functl.on from an |nf|n|te
351 dimensional multivariate Gaussian
30 ol - distribution
5 52 - N
< 20 2ol 1 » Generate sample populations to use in
£ 15 € 15l the cascade calculation
10 10 L ]
5 5F 1 Py(l) = pa(l) + GP
0

0 5 10 15 0 5 10 15

» Each sample population will
correspond to a single intensity
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» Each distribution gives massively different intensity distribution compared to
experiment for low Z (chlorine)

» For large Z (indium), the distributions are in much better agreement with both
each other and experiment

» K, L, and M electrons are less strongly perturbed for larger Z atoms s
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0.2
015 I+ i » Optimised exponents were calculated
S+ ) )
3 o \/ 1 for several elements using available
g + ] experimental data
o
00T ] » Rough trend of decreasing o with Z
0r + + 1 corresponding to a flatter distribution
-0.05 ‘ ‘ ‘ ‘ ‘ ‘ » With more data, predictive trends

7 could be feasible
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Implement Auger rates in Mudirac, and add the cascade functionality

v

Treat electrons and muon fully quantum mechanically and relativistically

v

v

Investigate I-distributions, particularly the integral derived from the classical slow
down of the muon:
_ RAIT [ R(E) > dP;(e)

dE
m 0 E E—Epqr (l) dE

AN() de

v

More systematic description of electron refilling, potentially ab initio
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