

Muon Cascade Calculations

Philip Jones

University of Warwick

Thursday 5th September 2024

Supervisors: Albert Bartók-Pártay, Nicholas Hine, Leandro Liborio, Adrian Hillier, Martin Plummer

 Elemental analysis is a modern usage of negative muons

- Elemental analysis is a modern usage of negative muons
- Negative muons are implanted into a material and are captured by the atoms of the composing elements

- Elemental analysis is a modern usage of negative muons
- Negative muons are implanted into a material and are captured by the atoms of the composing elements
- The initial momentum of the muon beam is tuneable, and so the depth of penetration can be varied

- Elemental analysis is a modern usage of negative muons
- Negative muons are implanted into a material and are captured by the atoms of the composing elements
- The initial momentum of the muon beam is tuneable, and so the depth of penetration can be varied
- As the muon transitions down the energy levels of the atom, X-rays are released, which are measured by detectors

Fig. 1: X-ray spectrum by Sturniolo¹

These X-rays are unique to each element, and so elements in a given sample can be identified

¹S. Sturniolo and A. Hillier, Mudirac: A Dirac Equation Solver for Elemental Analysis with Muonic X-Rays, X-Ray Spectrometry 50, 180 (2021).

Fig. 1: X-ray spectrum by Sturniolo¹

- These X-rays are unique to each element, and so elements in a given sample can be identified
- Examples of this include Roman coins, meteorites, and biological samples

¹S. Sturniolo and A. Hillier, Mudirac: A Dirac Equation Solver for Elemental Analysis with Muonic X-Rays, X-Ray Spectrometry 50, 180 (2021).

Fig. 1: X-ray spectrum by Sturniolo¹

- These X-rays are unique to each element, and so elements in a given sample can be identified
- Examples of this include Roman coins, meteorites, and biological samples
- Calculating the positions of peaks is simple, but calculating relative intensities is a difficult problem, as it relies on the initial muon population

¹S. Sturniolo and A. Hillier, Mudirac: A Dirac Equation Solver for Elemental Analysis with Muonic X-Rays, X-Ray Spectrometry 50, 180 (2021).

Fig. 1: X-ray spectrum by Sturniolo¹

- WARWICK
- These X-rays are unique to each element, and so elements in a given sample can be identified
- Examples of this include Roman coins, meteorites, and biological samples
- Calculating the positions of peaks is simple, but calculating relative intensities is a difficult problem, as it relies on the initial muon population
- Mudirac¹, a modern code for negative muon spectroscopy, gets the peak positions correct, but not the intensities
- We want a robust and predictive method for calculating muonic X-ray intensities

¹S. Sturniolo and A. Hillier, Mudirac: A Dirac Equation Solver for Elemental Analysis with Muonic X-Rays, X-Ray Spectrometry 50, 180 (2021).

▶ The Akylas¹ cascade code was published in 1977, and is still used to this day

- ▶ The Akylas¹ cascade code was published in 1977, and is still used to this day
- This code calculate the intensities of all possible X-ray transitions, with free parameters chosen by the user

- ▶ The Akylas¹ cascade code was published in 1977, and is still used to this day
- This code calculate the intensities of all possible X-ray transitions, with free parameters chosen by the user
- What functionality does it have?

Current Code

- ▶ The Akylas¹ cascade code was published in 1977, and is still used to this day
- This code calculate the intensities of all possible X-ray transitions, with free parameters chosen by the user
- What functionality does it have?
 - Uses non-relativistic, hydrogen-like radial wavefunctions for both electrons and muon

Non-relativistic, hydrogen-like approximation

 For a hydrogen-like atom, separate the total wavefunction into radial and angular parts

$$\psi_{n,l}(r,\theta,\phi) = R_{n,l}(r)Y_{l,m}(\theta,\phi)$$

▶ Bound muonic radial solutions are analytic, taking the familiar form of

$$R_{nl}(r) = \sqrt{\frac{Z(n-l-1)!}{n^2 a[(n+l)!]^3}} e^{-\rho/2} \rho^{l+1} L_{n+l}^{2l+1}(\rho)$$

▶ Similarly, we have analytic solutions for continuum electrons

$$R_{e2}(r_2) = \sqrt{\frac{m_e}{\hbar}} 2^{l+1} k^{l+\frac{1}{2}} e^{ikr_2} r_2^l e_1^{\frac{\pi y}{2}} F_1(l+1-iy;2l+2;-2ikr_2) \frac{|\Gamma(l+1-iy)|}{(2l+1)!}$$

▶ y is a dimensionless parameter which is inversely proportional to the kinetic energy of the emitted electron; larger y means a larger rate

- ▶ The Akylas¹ cascade code was published in 1977, and is still used to this day
- What functionality does it have?
 - Uses non-relativistic, hydrogen-like radial wavefunctions for both electrons and muon
 - ► Calculates radiative transitions up to and including octupole

Radiative Transitions

Radiative Transition

 We only consider the electric transition multipole operator, as magnetic multipoles proceed significantly slower

Radiative Transitions

Radiative Transition

 We only consider the electric transition multipole operator, as magnetic multipoles proceed significantly slower

$$\mathcal{M}_{LM}^{E}(\mathbf{r}) = e \left(\frac{|\mathbf{r}|Z}{a_{\mu}}\right)^{L} Y_{LM}^{*}(\hat{\mathbf{r}})$$

where ${\sf L}$ is the multipolarity of the transition

Radiative Transitions

Radiative Transition

 We only consider the electric transition multipole operator, as magnetic multipoles proceed significantly slower

$$\mathcal{M}_{LM}^{E}(\mathbf{r}) = e \left(\frac{|\mathbf{r}|Z}{a_{\mu}}\right)^{L} Y_{LM}^{*}(\hat{\mathbf{r}})$$

where ${\sf L}$ is the multipolarity of the transition

Total radiative rate can be computed by computing the matrix element:

$$\Gamma_{R}^{LM} = \frac{8\pi (L+1)}{L[(2L+1)!!]^{2}} \frac{1}{\hbar} \left(\frac{a_{\mu}\omega}{Zc}\right)^{2L+1} |\langle f | \mathcal{M}_{LM}^{E} | i \rangle |^{2}$$

- ▶ The Akylas¹ cascade code was published in 1977, and is still used to this day
- This code can calculate the intensities of the X-ray transitions, with parameters chosen by the user
- What functionality does it have?
 - Uses non-relativistic, hydrogen-like radial wavefunctions for both electrons and muon
 - Calculates radiative transitions up to and including octupole
 - ► Calculates Auger transitions up to and including octupole

¹V. R. Akylas and P. Vogel, Muonic Atom Cascade Program, Computer Physics Communications 15, 291 (1978).

Auger Transitions

In the non-relativistic scheme, product wavefunctions can be used to find the Auger rate

Auger Transitions

In the non-relativistic scheme, product wavefunctions can be used to find the Auger rate

- $$\begin{split} \Gamma_{A}^{L} &= \left| \int_{0}^{\infty} dr_{1} \int_{0}^{\infty} dr_{2} R_{\mu 2}^{*}(r_{1}) R_{e 2}^{*}(r_{2}) \right. \\ &\times \left. \frac{r_{<}^{L}}{r_{>}^{L+1}} R_{\mu 1}^{*}(r_{1}) R_{e 1}^{*}(r_{2}) r_{1}^{2} r_{2}^{2} \right|^{2} \\ &\times \left. |\text{Angular Part}|^{2} \times |\text{Electron population}| \end{split}$$
- Penetration occurs where the muon and electronic orbits overlap, and this is approximated by fitting to a simpler function

- ▶ The Akylas¹ cascade code was published in 1977, and is still used to this day
- This code can calculate the intensities of the X-ray transitions, with parameters chosen by the user
- What functionality does it have?
 - Uses non-relativistic, hydrogen-like radial wavefunctions for both electrons and muon
 - Calculates radiative transitions up to and including octupole
 - Calculates Auger transitions up to and including octupole
 - ► Formally treats K electron refilling, and approximately treats L and M refilling

¹V. R. Akylas and P. Vogel, Muonic Atom Cascade Program, Computer Physics Communications 15, 291 (1978).

Vacuum

 As the Auger transitions occur, empty electron subshells are left behind

¹P. Vogel, Atomic Aftereffects and the Line Shape of Muonic X Rays, Phys. Rev. A 8, 2292 (1973). 11/18

Vacuum

- As the Auger transitions occur, empty electron subshells are left behind
- K electron refilling is formally treated¹ through perturbation theory

¹P. Vogel, Atomic Aftereffects and the Line Shape of Muonic X Rays, Phys. Rev. A 8, 2292 (1973). 11/18

Vacuum

- As the Auger transitions occur, empty electron subshells are left behind
- K electron refilling is formally treated¹ through perturbation theory
- K electron has a user specified refilling width

¹P. Vogel, Atomic Aftereffects and the Line Shape of Muonic X Rays, Phys. Rev. A 8, 2292 (1973). 11/18

Vacuum

- As the Auger transitions occur, empty electron subshells are left behind
- K electron refilling is formally treated¹ through perturbation theory
- K electron has a user specified refilling width
- L and M electrons are either never refilled, or refilled instantly

¹P. Vogel, Atomic Aftereffects and the Line Shape of Muonic X Rays, Phys. Rev. A 8, 2292 (1973). ^{11/18}

Current Code

- \blacktriangleright The Akylas¹ cascade code was published in 1977, and is still used to this day
- This code can calculate the intensities of the X-ray transitions, with parameters chosen by the user
- What functionality does it have?
 - Uses non-relativistic, hydrogen-like radial wavefunctions for both electrons and muon
 - Calculates radiative transitions up to and including octupole
 - Calculates Auger transitions up to and including octupole
 - ► Formally treats K electron refilling, and approximately treats L and M refilling
 - Two different built in I-distributions, with custom distribution allowed as input

¹V. R. Akylas and P. Vogel, Muonic Atom Cascade Program, Computer Physics Communications 15, 291 (1978).

 The l-distribution is the distribution across angular momentum subshells of the population of the muon

 The l-distribution is the distribution across angular momentum subshells of the population of the muon

$$P(l) = \begin{cases} 2l+1 & \text{Statistical} \\ (2l+1)\exp(\alpha l) & \text{Modified statistical} \\ 1+al+bl^2 & \text{Quadratic} \end{cases}$$

Free parameters need to be chosen in some way; use a least squares regression using available experimental data:

 The l-distribution is the distribution across angular momentum subshells of the population of the muon

$$P(l) = \begin{cases} 2l+1 & \text{Statistical} \\ (2l+1)\exp(\alpha l) & \text{Modified statistical} \\ 1+al+bl^2 & \text{Quadratic} \end{cases}$$

Free parameters need to be chosen in some way; use a least squares regression using available experimental data:

$$\lambda_{\mathsf{opt}} = \operatorname*{argmin}_{\lambda} \left(\sum_{i}^{N} \left(rac{I_{\mathsf{calc}}, \lambda_i - I_{\mathsf{exp}}}{\sigma_{\mathsf{exp}}}
ight)^2
ight)$$

 The l-distribution is the distribution across angular momentum subshells of the population of the muon

$$P(l) = \begin{cases} 2l+1 & \text{Statistical} \\ (2l+1)\exp(\alpha l) & \text{Modified statistical} \\ 1+al+bl^2 & \text{Quadratic} \end{cases}$$

Free parameters need to be chosen in some way; use a least squares regression using available experimental data:

$$\lambda_{\mathsf{opt}} = \operatorname*{argmin}_{\lambda} \left(\sum_{i}^{N} \left(rac{I_{\mathsf{calc},\lambda_i} - I_{\mathsf{exp}}}{\sigma_{\mathsf{exp}}}
ight)^2
ight)$$

 This set of optimized parameter(s) gives us a function which we would like to sample

 The I-distribution is the distribution across angular momentum subshells of the population of the muon

$$P(l) = \begin{cases} 2l+1 & \text{Statistical} \\ (2l+1)\exp(\alpha l) & \text{Modified statistical} \\ 1+al+bl^2 & \text{Quadratic} \end{cases}$$

Free parameters need to be chosen in some way; use a least squares regression using available experimental data:

$$\lambda_{\mathsf{opt}} = \operatorname*{argmin}_{\lambda} \left(\sum_{i}^{N} \left(\frac{I_{\mathsf{calc},\lambda_i} - I_{\mathsf{exp}}}{\sigma_{\mathsf{exp}}} \right)^2 \right)$$

- This set of optimized parameter(s) gives us a function which we would like to sample
- Gaussian Processes can allow us to take samples using the fitted distribution as the mean

Gaussian Process Sampling

 A Gaussian Process is essentially sampling a function from an infinite dimensional multivariate Gaussian distribution

Gaussian Process Sampling

- A Gaussian Process is essentially sampling a function from an infinite dimensional multivariate Gaussian distribution
- Generate sample populations to use in the cascade calculation

$$P_{\lambda}(l) = \mu_{\lambda}(l) + \mathcal{GP}$$

Gaussian Process Sampling

- A Gaussian Process is essentially sampling a function from an infinite dimensional multivariate Gaussian distribution
- Generate sample populations to use in the cascade calculation

$$P_{\lambda}(l) = \mu_{\lambda}(l) + \mathcal{GP}$$

 Each sample population will correspond to a single intensity

- Each distribution gives massively different intensity distribution compared to experiment for low Z (chlorine)
- ► For large Z (indium), the distributions are in much better agreement with both each other and experiment
- \blacktriangleright K, L, and M electrons are less strongly perturbed for larger Z atoms

WARWICK

 Optimised exponents were calculated for several elements using available experimental data

- Optimised exponents were calculated for several elements using available experimental data
- Rough trend of decreasing α with Z corresponding to a flatter distribution

- Optimised exponents were calculated for several elements using available experimental data
- Rough trend of decreasing α with Z corresponding to a flatter distribution
- With more data, predictive trends could be feasible

What's next?

- ► Implement Auger rates in Mudirac, and add the cascade functionality
- ► Treat electrons and muon fully quantum mechanically and relativistically
- Investigate I-distributions, particularly the integral derived from the classical slow down of the muon:

$$\Delta N(l) = \frac{h^2 l \Delta l \pi}{m} \int_0^\infty \frac{R(E)}{E} dE \int_{E-E_{bar}(l)}^\infty \frac{dP_t(\epsilon)}{d\epsilon} d\epsilon$$

More systematic description of electron refilling, potentially ab initio

- Dr. Albert Bartók-Pártay
- ► Prof. Nicholas Hine
- ► Dr. Leandro Liborio
- ► Dr. Adrian Hillier
- Dr. Martin Plummer
- This work was jointly funded through the Ada Lovelace Centre studentship programme and supported by the Engineering and Physical Sciences Research Council through the CDT for Modelling of Heterogeneous Systems