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Introduction

▶ Elemental analysis is a modern usage of
negative muons

▶ Negative muons are implanted into a material
and are captured by the atoms of the
composing elements

▶ The initial momentum of the muon beam is
tuneable, and so the depth of penetration can
be varied

▶ As the muon transitions down the energy levels
of the atom, X-rays are released, which are
measured by detectors
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Introduction

Fig. 1: X-ray spectrum by Sturniolo1

▶ These X-rays are unique to each element,
and so elements in a given sample can be
identified

▶ Examples of this include Roman coins,
meteorites, and biological samples

▶ Calculating the positions of peaks is
simple, but calculating relative intensities
is a difficult problem, as it relies on the
initial muon population

▶ Mudirac1, a modern code for negative
muon spectroscopy, gets the peak
positions correct, but not the intensities

▶ We want a robust and predictive
method for calculating muonic X-ray
intensities

1S. Sturniolo and A. Hillier, Mudirac: A Dirac Equation Solver for Elemental Analysis with Muonic
X-Rays, X-Ray Spectrometry 50, 180 (2021).
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Current Code

▶ The Akylas1 cascade code was published in 1977, and is still used to this day

▶ This code calculate the intensities of all possible X-ray transitions, with free
parameters chosen by the user

▶ What functionality does it have?

▶ Uses non-relativistic, hydrogen-like radial wavefunctions for both
electrons and muon
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Non-relativistic, hydrogen-like approximation

▶ For a hydrogen-like atom, separate the total wavefunction into radial and angular
parts

ψn,l(r, θ, ϕ) = Rn,l(r)Yl,m(θ, ϕ)

▶ Bound muonic radial solutions are analytic, taking the familiar form of

Rnl(r) =

√
Z(n− l − 1)!

n2a[(n+ l)!]3
e−ρ/2ρl+1L2l+1

n+l (ρ)

▶ Similarly, we have analytic solutions for continuum electrons

Re2(r2) =

√
me

ℏ
2l+1kl+

1
2 eikr2rl2e

πy
2
1 F1(l + 1− iy; 2l + 2;−2ikr2)

|Γ(l + 1− iy)|
(2l + 1)!

▶ y is a dimensionless parameter which is inversely proportional to the kinetic
energy of the emitted electron; larger y means a larger rate
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Current Code

▶ The Akylas1 cascade code was published in 1977, and is still used to this day

▶ What functionality does it have?

▶ Uses non-relativistic, hydrogen-like radial wavefunctions for both electrons
and muon

▶ Calculates radiative transitions up to and including octupole
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Radiative Transitions

▶ We only consider the electric transition multipole
operator, as magnetic multipoles proceed
significantly slower

ME
LM (r) = e

(
|r|Z
aµ

)L

Y ∗
LM (r̂)

where L is the multipolarity of the transition

▶ Total radiative rate can be computed by computing
the matrix element:

ΓLM
R =

8π(L+ 1)

L[(2L+ 1)!!]2
1

ℏ

(aµω
Zc

)2L+1
|
〈
f
∣∣ME

LM

∣∣i〉 |2
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Current Code

▶ The Akylas1 cascade code was published in 1977, and is still used to this day

▶ This code can calculate the intensities of the X-ray transitions, with parameters
chosen by the user

▶ What functionality does it have?

▶ Uses non-relativistic, hydrogen-like radial wavefunctions for both electrons
and muon

▶ Calculates radiative transitions up to and including octupole
▶ Calculates Auger transitions up to and including octupole

1V. R. Akylas and P. Vogel, Muonic Atom Cascade Program, Computer Physics Communications
15, 291 (1978).



WARWICK

9/18

Auger Transitions

▶ In the non-relativistic scheme, product
wavefunctions can be used to find the Auger rate

ΓL
A =

∣∣∣∣∫ ∞

0
dr1

∫ ∞

0
dr2R

∗
µ2(r1)R

∗
e2(r2)

×
rL<
rL+1
>

R∗
µ1(r1)R

∗
e1(r2)r

2
1r

2
2

∣∣∣∣∣
2

× |Angular Part|2 × |Electron population|

▶ Penetration occurs where the muon and electronic
orbits overlap, and this is approximated by fitting
to a simpler function
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Current Code

▶ The Akylas1 cascade code was published in 1977, and is still used to this day

▶ This code can calculate the intensities of the X-ray transitions, with parameters
chosen by the user

▶ What functionality does it have?

▶ Uses non-relativistic, hydrogen-like radial wavefunctions for both electrons
and muon

▶ Calculates radiative transitions up to and including octupole
▶ Calculates Auger transitions up to and including octupole
▶ Formally treats K electron refilling, and approximately treats L and M

refilling

1V. R. Akylas and P. Vogel, Muonic Atom Cascade Program, Computer Physics Communications
15, 291 (1978).
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Electron Refilling

▶ As the Auger transitions occur, empty
electron subshells are left behind

▶ K electron refilling is formally treated1

through perturbation theory

▶ K electron has a user specified refilling
width

▶ L and M electrons are either never
refilled, or refilled instantly

1P. Vogel, Atomic Aftereffects and the Line Shape of Muonic X Rays, Phys. Rev. A 8, 2292 (1973).
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Current Code

▶ The Akylas1 cascade code was published in 1977, and is still used to this day

▶ This code can calculate the intensities of the X-ray transitions, with parameters
chosen by the user

▶ What functionality does it have?

▶ Uses non-relativistic, hydrogen-like radial wavefunctions for both electrons
and muon

▶ Calculates radiative transitions up to and including octupole
▶ Calculates Auger transitions up to and including octupole
▶ Formally treats K electron refilling, and approximately treats L and M refilling
▶ Two different built in l-distributions, with custom distribution allowed

as input

1V. R. Akylas and P. Vogel, Muonic Atom Cascade Program, Computer Physics Communications
15, 291 (1978).
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l-distributions

▶ The l-distribution is the distribution across angular momentum subshells of the
population of the muon

P (l) =


2l + 1 Statistical

(2l + 1) exp(αl) Modified statistical

1 + al + bl2 Quadratic

▶ Free parameters need to be chosen in some way; use a least squares regression
using available experimental data:

λopt = argmin
λ

(
N∑
i

(
Icalc,λi

− Iexp
σexp

)2
)

▶ This set of optimized parameter(s) gives us a function which we would like to
sample

▶ Gaussian Processes can allow us to take samples using the fitted distribution as
the mean
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Gaussian Process Sampling
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▶ A Gaussian Process is essentially
sampling a function from an infinite
dimensional multivariate Gaussian
distribution

▶ Generate sample populations to use in
the cascade calculation

Pλ(l) = µλ(l) + GP

▶ Each sample population will
correspond to a single intensity
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Results
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▶ Each distribution gives massively different intensity distribution compared to
experiment for low Z (chlorine)

▶ For large Z (indium), the distributions are in much better agreement with both
each other and experiment

▶ K, L, and M electrons are less strongly perturbed for larger Z atoms
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Results
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▶ Optimised exponents were calculated
for several elements using available
experimental data

▶ Rough trend of decreasing α with Z
corresponding to a flatter distribution

▶ With more data, predictive trends
could be feasible
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What’s next?

▶ Implement Auger rates in Mudirac, and add the cascade functionality

▶ Treat electrons and muon fully quantum mechanically and relativistically

▶ Investigate l-distributions, particularly the integral derived from the classical slow
down of the muon:

∆N(l) =
h2l∆lπ

m

∫ ∞

0

R(E)

E
dE

∫ ∞

E−Ebar(l)

dPt(ϵ)

dϵ
dϵ

▶ More systematic description of electron refilling, potentially ab initio
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