

Muon Cascade Calculations

Philip Jones

University of Warwick

Thursday 5th September 2024

Supervisors: Albert Bartók-Pártay, Nicholas Hine, Leandro Liborio, Adrian Hillier, Martin Plummer

 \blacktriangleright Elemental analysis is a modern usage of negative muons

- \blacktriangleright Elemental analysis is a modern usage of negative muons
- \triangleright Negative muons are implanted into a material and are captured by the atoms of the composing elements

- \blacktriangleright Elemental analysis is a modern usage of negative muons
- \triangleright Negative muons are implanted into a material and are captured by the atoms of the composing elements
- \triangleright The initial momentum of the muon beam is tuneable, and so the depth of penetration can be varied

- \blacktriangleright Elemental analysis is a modern usage of negative muons
- \triangleright Negative muons are implanted into a material and are captured by the atoms of the composing elements
- \triangleright The initial momentum of the muon beam is tuneable, and so the depth of penetration can be varied
- \triangleright As the muon transitions down the energy levels of the atom, X-rays are released, which are measured by detectors

- Fig. 1: X-ray spectrum by Sturniolo¹
- ¹S. Sturniolo and A. Hillier, Mudirac: A Dirac Equation Solver for Elemental Analysis with Muonic X-Rays, X-Ray Spectrometry 50, 180 (2021).

 \triangleright These X-rays are unique to each element, and so elements in a given sample can be identified

Fig. 1: X-ray spectrum by Sturniolo¹

- \triangleright These X-rays are unique to each element, and so elements in a given sample can be identified
- \triangleright Examples of this include Roman coins, meteorites, and biological samples

¹S. Sturniolo and A. Hillier, Mudirac: A Dirac Equation Solver for Elemental Analysis with Muonic X-Rays, X-Ray Spectrometry 50, 180 (2021).

Fig. 1: X-ray spectrum by Sturniolo¹

- \triangleright These X-rays are unique to each element, and so elements in a given sample can be identified
- \blacktriangleright Examples of this include Roman coins, meteorites, and biological samples
- \triangleright Calculating the positions of peaks is simple, but calculating relative intensities is a difficult problem, as it relies on the initial muon population

¹S. Sturniolo and A. Hillier, Mudirac: A Dirac Equation Solver for Elemental Analysis with Muonic X-Rays, X-Ray Spectrometry 50, 180 (2021).

Fig. 1: X-ray spectrum by Sturniolo¹

- \triangleright These X-rays are unique to each element, and so elements in a given sample can be identified
- \blacktriangleright Examples of this include Roman coins, meteorites, and biological samples
- \triangleright Calculating the positions of peaks is simple, but calculating relative intensities is a difficult problem, as it relies on the initial muon population
- \blacktriangleright Mudirac¹, a modern code for negative muon spectroscopy, gets the peak positions correct, but not the intensities
- \triangleright We want a robust and predictive method for calculating muonic X-ray intensities

¹S. Sturniolo and A. Hillier, Mudirac: A Dirac Equation Solver for Elemental Analysis with Muonic X-Rays, X-Ray Spectrometry 50, 180 (2021).

 \blacktriangleright The Akylas 1 cascade code was published in 1977, and is still used to this day

- \blacktriangleright The Akylas 1 cascade code was published in 1977, and is still used to this day
- \triangleright This code calculate the intensities of all possible X-ray transitions, with free parameters chosen by the user

- \blacktriangleright The Akylas 1 cascade code was published in 1977, and is still used to this day
- \triangleright This code calculate the intensities of all possible X-ray transitions, with free parameters chosen by the user
- \triangleright What functionality does it have?

Current Code

- \blacktriangleright The Akylas 1 cascade code was published in 1977, and is still used to this day
- \triangleright This code calculate the intensities of all possible X-ray transitions, with free parameters chosen by the user
- \triangleright What functionality does it have?
	- \triangleright Uses non-relativistic, hydrogen-like radial wavefunctions for both electrons and muon

Non-relativistic, hydrogen-like approximation

 \triangleright For a hydrogen-like atom, separate the total wavefunction into radial and angular parts

$$
\psi_{n,l}(r,\theta,\phi)=R_{n,l}(r)Y_{l,m}(\theta,\phi)
$$

 \triangleright Bound muonic radial solutions are analytic, taking the familiar form of

$$
R_{nl}(r) = \sqrt{\frac{Z(n-l-1)!}{n^2 a[(n+l)!]^3}} e^{-\rho/2} \rho^{l+1} L_{n+l}^{2l+1}(\rho)
$$

 \triangleright Similarly, we have analytic solutions for continuum electrons

$$
R_{e2}(r_2) = \sqrt{\frac{m_e}{\hbar}} 2^{l+1} k^{l+\frac{1}{2}} e^{ikr_2} r_2^l e_1^{\frac{\pi y}{2}} F_1(l+1-iy; 2l+2; -2ikr_2) \frac{|\Gamma(l+1-iy)|}{(2l+1)!}
$$

 $\rightarrow y$ is a dimensionless parameter which is inversely proportional to the kinetic energy of the emitted electron; larger y means a larger rate

- \blacktriangleright The Akylas 1 cascade code was published in 1977, and is still used to this day
- \triangleright What functionality does it have?
	- \triangleright Uses non-relativistic, hydrogen-like radial wavefunctions for both electrons and muon
	- \triangleright Calculates radiative transitions up to and including octupole

Radiative Transitions

Radiative Transition

 \triangleright We only consider the electric transition multipole operator, as magnetic multipoles proceed significantly slower

Radiative Transitions

Radiative Transition

 \triangleright We only consider the electric transition multipole operator, as magnetic multipoles proceed significantly slower

$$
\mathcal{M}_{LM}^E(\mathbf{r}) = e \left(\frac{|\mathbf{r}|Z}{a_{\mu}}\right)^L Y_{LM}^*(\hat{\mathbf{r}})
$$

where L is the multipolarity of the transition

Radiative Transitions

Radiative Transition

 \triangleright We only consider the electric transition multipole operator, as magnetic multipoles proceed significantly slower

$$
\mathcal{M}_{LM}^E(\mathbf{r}) = e \left(\frac{|\mathbf{r}|Z}{a_{\mu}}\right)^L Y_{LM}^*(\hat{\mathbf{r}})
$$

where L is the multipolarity of the transition

 \triangleright Total radiative rate can be computed by computing the matrix element:

$$
\Gamma_R^{LM}=\frac{8\pi(L+1)}{L[(2L+1)!!]^2}\frac{1}{\hbar}\left(\frac{a_{\mu}\omega}{Zc}\right)^{2L+1}|\left\langle f\big|{\cal M}^{E}_{LM}\big|i\right\rangle|^2
$$

- \blacktriangleright The Akylas 1 cascade code was published in 1977, and is still used to this day
- \triangleright This code can calculate the intensities of the X-ray transitions, with parameters chosen by the user
- \triangleright What functionality does it have?
	- \triangleright Uses non-relativistic, hydrogen-like radial wavefunctions for both electrons and muon
	- \triangleright Calculates radiative transitions up to and including octupole
	- \triangleright Calculates Auger transitions up to and including octupole

 $1V$. R. Akylas and P. Vogel, Muonic Atom Cascade Program, Computer Physics Communications 15, 291 (1978).

Auger Transitions

 2

In the non-relativistic scheme, product wavefunctions can be used to find the Auger rate

Auger Transitions

 \blacktriangleright In the non-relativistic scheme, product wavefunctions can be used to find the Auger rate

- Γ^L_A = $\Big|$ \int^{∞} 0 $dr_1 \int_{-\infty}^{\infty}$ $\boldsymbol{0}$ $dr_2 R_{\mu 2}^*(r_1) R_{e2}^*(r_2)$ \times $\frac{r_<^L}{l_<^+}$ $r_{>}^{L+1}$ $R_{\mu 1}^*(r_1) R_{e1}^*(r_2) r_1^2 r_2^2$ 2 \times | Angular Part $|^2 \times$ | Electron population|
- Penetration occurs where the muon and electronic orbits overlap, and this is approximated by fitting to a simpler function

- \blacktriangleright The Akylas 1 cascade code was published in 1977, and is still used to this day
- \triangleright This code can calculate the intensities of the X-ray transitions, with parameters chosen by the user
- \triangleright What functionality does it have?
	- \triangleright Uses non-relativistic, hydrogen-like radial wavefunctions for both electrons and muon
	- \triangleright Calculates radiative transitions up to and including octupole
	- \triangleright Calculates Auger transitions up to and including octupole
	- \triangleright Formally treats K electron refilling, and approximately treats L and M refilling

 $1V$. R. Akylas and P. Vogel, Muonic Atom Cascade Program, Computer Physics Communications 15, 291 (1978).

Vacuum

 \triangleright As the Auger transitions occur, empty electron subshells are left behind

^{11/18} ¹P. Vogel, Atomic Aftereffects and the Line Shape of Muonic X Rays, Phys. Rev. A 8, 2292 (1973).

Vacuum

- \triangleright As the Auger transitions occur, empty electron subshells are left behind
- \triangleright K electron refilling is formally treated¹ through perturbation theory

^{11/18} ¹P. Vogel, Atomic Aftereffects and the Line Shape of Muonic X Rays, Phys. Rev. A 8, 2292 (1973).

Vacuum

- \triangleright As the Auger transitions occur, empty electron subshells are left behind
- \triangleright K electron refilling is formally treated¹ through perturbation theory
- \triangleright K electron has a user specified refilling width

^{11/18} ¹P. Vogel, Atomic Aftereffects and the Line Shape of Muonic X Rays, Phys. Rev. A 8, 2292 (1973).

Vacuum

- \triangleright As the Auger transitions occur, empty electron subshells are left behind
- \triangleright K electron refilling is formally treated¹ through perturbation theory
- \triangleright K electron has a user specified refilling width
- ▶ L and M electrons are either never refilled, or refilled instantly

^{11/18} ¹P. Vogel, Atomic Aftereffects and the Line Shape of Muonic X Rays, Phys. Rev. A 8, 2292 (1973).

- \blacktriangleright The Akylas 1 cascade code was published in 1977, and is still used to this day
- \triangleright This code can calculate the intensities of the X-ray transitions, with parameters chosen by the user
- \triangleright What functionality does it have?
	- \triangleright Uses non-relativistic, hydrogen-like radial wavefunctions for both electrons and muon
	- \triangleright Calculates radiative transitions up to and including octupole
	- \triangleright Calculates Auger transitions up to and including octupole
	- \triangleright Formally treats K electron refilling, and approximately treats L and M refilling
	- \triangleright Two different built in I-distributions, with custom distribution allowed as input

 $1V$. R. Akylas and P. Vogel, Muonic Atom Cascade Program, Computer Physics Communications 15, 291 (1978).

WARWICK \triangleright The I-distribution is the distribution across angular momentum subshells of the population of the muon

WARWICK \triangleright The l-distribution is the distribution across angular momentum subshells of the population of the muon

$$
P(l) = \begin{cases} 2l + 1 & \text{Statistical} \\ (2l + 1) \exp(\alpha l) & \text{Modified statistical} \\ 1 + al + bl^2 & \text{Quadratic} \end{cases}
$$

▶ Free parameters need to be chosen in some way; use a least squares regression using available experimental data:

WARWICK \triangleright The l-distribution is the distribution across angular momentum subshells of the population of the muon

$$
P(l) = \begin{cases} 2l + 1 & \text{Statistical} \\ (2l + 1) \exp(\alpha l) & \text{Modified statistical} \\ 1 + al + bl^2 & \text{Quadratic} \end{cases}
$$

▶ Free parameters need to be chosen in some way; use a least squares regression using available experimental data:

$$
\lambda_{\mathsf{opt}} = \underset{\lambda}{\text{argmin}}\left(\sum_{i}^{N}\left(\frac{I_{\mathsf{calc},\lambda_i} - I_{\mathsf{exp}}}{\sigma_{\mathsf{exp}}}\right)^2\right)
$$

 \triangleright The l-distribution is the distribution across angular momentum subshells of the population of the muon

$$
P(l) = \begin{cases} 2l + 1 & \text{Statistical} \\ (2l + 1) \exp(\alpha l) & \text{Modified statistical} \\ 1 + al + bl^2 & \text{Quadratic} \end{cases}
$$

▶ Free parameters need to be chosen in some way; use a least squares regression using available experimental data:

$$
\lambda_{\mathsf{opt}} = \underset{\lambda}{\text{argmin}} \left(\sum_{i}^{N} \left(\frac{I_{\mathsf{calc}, \lambda_i} - I_{\mathsf{exp}}}{\sigma_{\mathsf{exp}}} \right)^2 \right)
$$

 \triangleright This set of optimized parameter(s) gives us a function which we would like to sample

MARMICK

 \triangleright The l-distribution is the distribution across angular momentum subshells of the population of the muon

$$
P(l) = \begin{cases} 2l + 1 & \text{Statistical} \\ (2l + 1) \exp(\alpha l) & \text{Modified statistical} \\ 1 + al + bl^2 & \text{Quadratic} \end{cases}
$$

▶ Free parameters need to be chosen in some way; use a least squares regression using available experimental data:

$$
\lambda_{\mathsf{opt}} = \underset{\lambda}{\text{argmin}} \left(\sum_{i}^{N} \left(\frac{I_{\mathsf{calc}, \lambda_i} - I_{\mathsf{exp}}}{\sigma_{\mathsf{exp}}} \right)^2 \right)
$$

- \triangleright This set of optimized parameter(s) gives us a function which we would like to sample
- \triangleright Gaussian Processes can allow us to take samples using the fitted distribution as the mean

MARMICK

Gaussian Process Sampling

 \triangleright A Gaussian Process is essentially sampling a function from an infinite dimensional multivariate Gaussian distribution

Gaussian Process Sampling

- \triangleright A Gaussian Process is essentially sampling a function from an infinite dimensional multivariate Gaussian distribution
- \triangleright Generate sample populations to use in the cascade calculation

$$
P_{\lambda}(l) = \mu_{\lambda}(l) + \mathcal{GP}
$$

Gaussian Process Sampling

- \triangleright A Gaussian Process is essentially sampling a function from an infinite dimensional multivariate Gaussian distribution
- \triangleright Generate sample populations to use in the cascade calculation

$$
P_{\lambda}(l) = \mu_{\lambda}(l) + \mathcal{GP}
$$

 \blacktriangleright Each sample population will correspond to a single intensity

- \triangleright Each distribution gives massively different intensity distribution compared to experiment for low Z (chlorine)
- \triangleright For large Z (indium), the distributions are in much better agreement with both each other and experiment
- ▶ K, L, and M electrons are less strongly perturbed for larger Z atoms

WARWICK

▶ Optimised exponents were calculated for several elements using available experimental data

- ▶ Optimised exponents were calculated for several elements using available experimental data
- **► Rough trend of decreasing** α **with Z** corresponding to a flatter distribution

- ▶ Optimised exponents were calculated for several elements using available experimental data
- **► Rough trend of decreasing** α **with Z** corresponding to a flatter distribution
- \triangleright With more data, predictive trends could be feasible

What's next?

- \triangleright Implement Auger rates in Mudirac, and add the cascade functionality
- \triangleright Treat electrons and muon fully quantum mechanically and relativistically
- \triangleright Investigate l-distributions, particularly the integral derived from the classical slow down of the muon:

$$
\Delta N(l) = \frac{h^2 l \Delta l \pi}{m} \int_0^\infty \frac{R(E)}{E} dE \int_{E-E_{bar}(l)}^\infty \frac{dP_t(\epsilon)}{d\epsilon} d\epsilon
$$

 \triangleright More systematic description of electron refilling, potentially ab initio

- \triangleright Dr. Albert Bartók-Pártay
- ▶ Prof. Nicholas Hine
- ▶ Dr. Leandro Liborio
- ▶ Dr. Adrian Hillier
- ▶ Dr. Martin Plummer
- \triangleright This work was jointly funded through the Ada Lovelace Centre studentship programme and supported by the Engineering and Physical Sciences Research Council through the CDT for Modelling of Heterogeneous Systems