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What is a high-entropy alloy? How do we model multicomponent alloys?

Medium- and High-entropy alloys: Linear Response
— First examples synthesised in 2004 (1, 2). — Mean-field free energy based on partial atomic occupancies of lattice sites, {c:,}(3., 4, 5):

_ MuIT|pIe metals combined in roughly equal ratios. )= _g"! Z i 108 iy — Z ViaCio + Qe ol {Cia ) (2)
— Simple, close-packed structures: fcc, bcc, hcp. - .
— Single-phase solid solufion stabilised by configurational — Impose perturbation about homogeneous (disordered) alloy, ¢;, = ¢, + Ac;,.
entropy: — Change in free energy due to perturbation written:
—/3_1 Z Cia lOg i (1) 1 2 Oaa! 32<Qel>0 (2)
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Why are we interested? ij o J

Increased understanding of how fo confrol atomic ar- Term in square brackets referred to as ‘chemical stability martrix’.
rangements in these alloys may allow for improvement of — Assess which perturbations are energetically favourable to find dominant correlations.
advanced magnetic materials perforrnance. In particular, . - . "

— Convenient fo perform analysis in reciprocal space, writing Ac, (k).

for control of anisotropy and resistivity in soft magnetic ma- ,
terials. (Transformer alloys, for example). Advanced pro- — Derivatives of infernal energy, Sf&?ja,, and description of afomic short-range order come

cessing approaches could exert this control, could support from ab initio DFT analysis (3): can compare different magnefic states.
advanced manufacturing. Atomistic Modelling

What is the challenge for modellers? — Fit fo a Bragg-Williams Hamiltonian for atomistic modelling:

Modelling atomic arrangements in these materials and, H({&}) = > Viajaiojo (4)
more generdlly, mulficomponent alloys is difficult on ac- ij o
count of the vast space of potential atomic configurations. &io - doOes sife « contain atom of species a? Vi, ;v - INnferaction between atoms.

How does the Magnetic State Affect Atomic Ordering? Electronic Origins

Superb test case is given by ternary ‘'medium-entropy’ alloy CrCoNi.
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Eigenvalues of the chemical stability matrix around the irreducible Brillouin zone for CrCoNi
in its ferrimagnetic (FM") and paramagnetic ('PM’) states, evaluated at T=1000 K. There is
clear competition between minima at k = (0,0, 1) and k = (0, 2/3, 2/3)

Conclusions

— Correct freatment of magnetic state essential to moad-
elling atomic arrangements and materials properties.

Magnetic State  Tgog (K)  kog @r/a) ACr ACO A Ni — Annedling some alloys in an applied magnetic field
EM 252 0,0, 1) 0813 —0468 —0.345 could alter nafure of atomic arrangements.

PM 606 (0, 2/3,2/3) 0.724 -0.689 —-0.035

Ordering Temperatures

Predicted chemical ordering assuming a ferrimagnetic state is the MoPt, structure, versus
L1, stfructure for paramagnetic state. Ordering temperature also changes dramatically.
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