Using the Coherent Potential Approximation and DFT to Examine the Phase Behaviour of High-Entropy Alloys: Case Study of Al_xCrFeCoNi.

Christopher D. Woodgate

University of Warwick, Coventry, UK

CCP5 AGM 2024

Talk Plan

Aim: demonstrate that perturbative analysis of CPA energy provides a powerful tool for exploring HEA phase space.

1. Context

- 1.1 High-Entropy Alloys: Background
- 1.2 Modelling Challenges
- 1.3 Modelling Solutions(?)
- 2. Our Modelling Approach
- 3. Results for Al_xCrFeCoNi
- 4. Conclusions

Context

1)

High-Entropy Alloys: Background

Alloy

- Mixture of multiple (usually) metallic elements.
- Today's talk: substitutional alloys.
- 'High-Entropy' Alloy
 - First reported in 2004.
 - Sufficiently many elements (4+) in right concentrations (near-equiatomic) that 'entropy of mixing',

$$TS = -k_B T \sum_{lpha} c_{lpha} \log c_{lpha},$$
 (

makes 'significant' contribution to free energy.

- Often superior physical properties for applications.
- Of fundamental physical interest, too.

Christopher D. Woodgate

Conclusions

High-Entropy Alloys: Modelling Challenges

- Huge space of potential compositions, but most modelling results are specific to one particular composition.
- Even for one particular composition, need to inspect many possible atomic configurations.
- Magnetic elements: Fe, Mn, Ni, Co. Which magnetic state to model in DFT?

Modelling the Phase Behaviour of High-Entropy Alloys

Christopher D. Woodgate

Conclusions

High-Entropy Materials: Modelling Solutions

Here, concerned with phase stability. A few options:

- 'Brute-force' DFT study: run DFT on many atomic configurations. *Hugely expensive*.
- Interatomic potentials, cluster expansions, MLIPs¹. Cheaper, but still need DFT training data.
- Effective medium theories: average over disorder in a (clever) physically meaningful way. Cheap!

Christopher D. Woodgate

University of Warwick, UK

¹Shenoy, Woodgate, *et al.*, Phys. Rev. Mater. **8** 033804 (2024).

Modelling Approach

Our Description

Our approach uses the last option: an effective medium theory.

- Evaluate internal energy of fully disordered alloy within DFT using Coherent Potential Approximation (CPA).
- Apply inhomogeneous chemical perturbation and assess energetic cost^{2,3}.
- Clever bit: do this using concentration waves, i.e. in k-space.

 2 Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022) 3 Woodgate, Staunton, Phys. Rev. Mater **7** 013801 (2023)

Christopher D. Woodgate

University of Warwick, UK

Inferring Orderings

Two options:

- Option 1: infer orderings directly.
 - Perturbative analysis
 - \rightarrow Taylor expansion of Gibbs free energy.
 - \rightarrow Apply Landau theory.
- Option 2: lattice-based atomistic simulations.
 - Perturbative analysis
 - \rightarrow effective pair interactions.
 - \rightarrow Explore using nested sampling.

$$H(\{\xi_{i\alpha}\}) = \frac{1}{2} \sum_{\substack{i\alpha\\j\alpha'}} V_{i\alpha;j\alpha'} \,\xi_{i\alpha}\xi_{j\beta}$$

⁴Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater 7 053801 (2023)

Christopher D. Woodgate

Successful Applications

- CrMnFeCoNi and derivatives.
 - C. D. Woodgate, J. B. Staunton, Phys. Rev. B 105 115124 (2022).
- VNbMoTaW and derivatives.
 - C. D. Woodgate, J. B. Staunton, Phys. Rev. Mater. 7 013801 (2023).
- Influence of Magnetism on Atomic Ordering.
 - C. D. Woodgate, D. Hedlund, L. H. Lewis, J. B. Staunton, Phys. Rev. Mater. 7, 053801 (2023).
- Influence of Ti additions: Ti_xVNbMoTaW
 - C. D. Woodgate, J. B. Staunton, J Appl. Phys. 135 135106 (2024).
- ► Al_xCrFeCoNi 'Superalloy'.
 - C. D. Woodgate, G. A. Marchant, L. B. Pártay, J. B. Staunton, arXiv:2404.01373.

Results 0●000000

Case Study: Al_xCrFeCoNi

⁵Woodgate, Marchant, Pártay, Staunton, arXiv:2404.13173

Christopher D. Woodgate

University of Warwick, UK

Results 00000000 Conclusions

Al_xCrFeCoNi: Electronic Structure within CPA

⁵Woodgate, Marchant, Pártay, Staunton, arXiv:2404.13173

Christopher D. Woodgate

University of Warwick, UK

Results 00000000

Al_xCrFeCoNi: Underlying Lattice

⁵Woodgate, Marchant, Pártay, Staunton, arXiv:2404.13173

Christopher D. Woodgate

University of Warwick, UK

Results 0000●000

Al_xCrFeCoNi: Perturbative Analysis

⁵Woodgate, Marchant, Pártay, Staunton, arXiv:2404.13173

Christopher D. Woodgate

University of Warwick, UK

Results 00000000

Al_xCrFeCoNi: Inferred Orderings

⁵Woodgate, Marchant, Pártay, Staunton, arXiv:2404.13173

Christopher D. Woodgate

University of Warwick, UK

Al_xCrFeCoNi: Ordering Temperatures

Lattice	Composition	$T_{\rm ord}$ (K)	$\mathbf{k}_{ord} (2\pi/a)$	Structure
fcc	CrFeCoNi	380	(0,0,1)	L1 ₂
	Al _{0.5} CrFeCoNi	562	$(0, \frac{1}{2}, 1)$	D0 ₂₂
	AlCrFeCoNi	744	$(0, \frac{1}{2}, 1)$	D0 ₂₂
	Al _{1.5} CrFeCoNi	987	$(0, \frac{1}{2}, 1)$	D0 ₂₂
	$AI_2CrFeCoNi$	1082	$(0, \bar{0}, 1)$	$L1_2$
bcc	CrFeCoNi	488	(0,0,0)	Phase Seg.
	Al _{0.5} CrFeCoNi	1982	(0,0,1)	B2
	AlCrFeCoNi	3006	(0,0,1)	B2
	Al _{1.5} CrFeCoNi	3781	(0,0,1)	B2
	$AI_2CrFeCoNi$	4386	(0,0,1)	B2

High ordering temperatures consistent with experimental data.

⁵Woodgate, Marchant, Pártay, Staunton, arXiv:2404.13173

Christopher D. Woodgate

University of Warwick, UK

$AI_xCrFeCoNi$: Atomistic Modelling \rightarrow Further Insight

(Cell duplicated $2 \times 2 \times 2$ times for clarity.)

⁵Woodgate, Marchant, Pártay, Staunton, arXiv:2404.13173

Christopher D. Woodgate

University of Warwick, UK

Conclusions

Take-Home Messages

Coherent Potential Approximation (CPA)

CPA provides a *powerful* tool for modelling the electronic structure and internal energies of disordered, high-entropy systems for minimal computational cost.

Perturbative Analysis

Analysis of energetic cost of chemical fluctuations applied to homogeneous CPA medium can tell us about atomic ordering tendencies.

Superb Agreement with Experiment

For \sim 1000 core-hours, can predict phase behaviour across range of compositions and temperatures.

Christopher D. Woodgate

Results 00000000 Conclusions

Acknowledgements Funding

- C.D.W. supported by a studentship within EPSRC-funded CDT: warwick.ac.uk/hetsys
- EPSRC (UK)

Upcoming Move

 C.D.W. will be moving to the University of Bristol (UK) from October.

Our paper: arXiv:2404.13173

People

Department of Physics, University of Warwick, UK

- Christopher D. Woodgate
- George A. Marchant
- Julie B. Staunton

Department of Chemistry, University of Warwick, UK

Livia B. Pártay

Engineering and Physical Sciences Research Council

Recent Book:

⁶Woodgate, Springer Series in Materials Science, Vol. 346. (Springer Nature Switzerland, Cham, 2024).

Christopher D. Woodgate

University of Warwick, UK