

Magnetism Matters: Modelling Atomic Arrangements in Multicomponent Alloys

C. D. Woodgate¹, D. Hedlund², L. H. Lewis², J. B. Staunton¹

¹University of Warwick, Coventry, UK ²Northeastern University, Boston, USA

CCP5 AGM 2023

C. D. Woodgate¹, D. Hedlund², L. H. Lewis²

Multicomponent Alloys

- \blacktriangleright Steels, e.g. Fe₇₀Cr₂₀Ni₁₀.
- ▶ High Entropy Alloys (HEAs), e.g. CrMnFeCoNi, CrCoNi, NbMoTaW.
- ▶ HEAs: solid solution stabilised by large "entropy of mixing"

$$
\mathcal{TS} = -k_B \mathcal{T} \sum_{\alpha} c_{\alpha} \log c_{\alpha}.
$$
 (1)

▶ At what temperature will order emerge? What is the nature of order? Short-range? Long-range? Materials properties?

C. D. Woodgate¹, D. Hedlund², L. H. Lewis²

Challenge for Modellers

- \triangleright Space of possible atomic configurations is *vast*. Challenges conventional, supercell-based techniques.
- \blacktriangleright For alloys containing magnetic elements, e.g. CrCoNi, how should magnetism be treated?

▶ Would like a *computationally efficient* modelling approach to assess phase stability.

Our Description

- ▶ On lattice
- \triangleright Specify configuration by $\{\xi_{i\alpha}\}.$
- \blacktriangleright Interested in the average value of these, *i.e.* partial occupancies:

$$
c_{i\alpha}\equiv\langle\xi_{i\alpha}\rangle
$$

 \blacktriangleright Perturb high-T, homogeneous state $c_{i\alpha} = c_{\alpha} + \Delta c_{i\alpha}$ and see what favourable correlations are¹².

¹Woodgate, Staunton, Phys. Rev. B 105 115124 (2022) 2 Woodgate, Staunton, Phys. Rev. Mater. 7 013801 (2023)

C. D. Woodgate¹, D. Hedlund², L. H. Lewis²

[Magnetism Matters](#page-0-0) 4 of 15

Concentration Waves

ci^α = c^α + η^α 1 2 e ⁱq·Rⁱ + e −iq·Rⁱ , q = 1 2 , 1 2 . η = (0, 0) η = (0.25, −0.25) η = (0.5, −0.5)

 1 Woodgate, Staunton, Phys. Rev. B 105 115124 (2022) 2 Woodgate, Staunton, Phys. Rev. Mater. 7 013801 (2023)

C. D. Woodgate¹, D. Hedlund², L. H. Lewis²

[Magnetism Matters](#page-0-0) 5 of 15

 1 Warwick, 2 Northeastern

Energetics: First-Principles

- \blacktriangleright Evaluate cost of fluctuations ab initio via DFT. using KKR-CPA and a linear response theory 123 .
- ▶ Mean-field free energy:

$$
G = \beta^{-1} \sum_{i\alpha} c_{i\alpha} \log c_{i\alpha} - \sum_{i\alpha}^{\prime} \nu_{i\alpha} c_{i\alpha} + \langle \Omega_{el} \rangle_0 [\{c_{i\alpha}\}]
$$

Important quantity:

$$
S^{(2)}_{i\alpha;j\alpha'}\equiv \frac{\partial^2\langle \Omega_{\text{el}}\rangle_0}{\partial c_{i\alpha}\partial c_{j\alpha'}}\leadsto \Psi_{\alpha\alpha'}^{-1}(\mathbf{q})
$$

¹Woodgate, Staunton, Phys. Rev. B 105 115124 (2022) ²Woodgate, Staunton, Phys. Rev. Mater. 7013801 (2023) 3 Khan, Staunton, Stocks, Phys. Rev. B 93 054206 (2016)

C. D. Woodgate¹, D. Hedlund², L. H. Lewis²

[Magnetism Matters](#page-0-0) 6 of 15

Energetics: Interatomic Potential

▶ Bragg-Williams Hamiltonian for atomistic modelling:

$$
H(\{\xi_{i\alpha}\})=\frac{1}{2}\sum_{\substack{i\alpha\\j\alpha'}}V_{i\alpha;j\alpha'}\,\xi_{i\alpha}\xi_{j\beta}
$$

- ▶ If H as above, $V_{i\alpha;j\alpha'} = -S_{i\alpha;j\alpha'}^{(2)}$ exactly.
- \blacktriangleright Generate physically-motivated configurations for subsequent study.

¹Woodgate, Staunton, Phys. Rev. B 105 115124 (2022)

 2 Woodgate, Staunton, Phys. Rev. Mater. 7 013801 (2023)

C. D. Woodgate¹, D. Hedlund², L. H. Lewis²

[Magnetism Matters](#page-0-0) 7 of 15

CrCoNi: Linear Response

▶ Shape of modes and location of minimum altered.

⁴Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. 7 053801 (2023)

C. D. Woodgate¹, D. Hedlund², L. H. Lewis²

[Magnetism Matters](#page-0-0) 8 of 15

CrCoNi: Inferred Orderings

▶ Different predicted chemical orderings based on magnetic state! Can we observe this experimentally in some systems?

⁴Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. 7 053801 (2023)

C. D. Woodgate¹, D. Hedlund², L. H. Lewis²

[Magnetism Matters](#page-0-0) 9 of 15

CrCoNi: Atomistic Modelling

C. D. Woodgate¹, D. Hedlund², L. H. Lewis², J. B. Staunton¹ evident in MC and ¹ Warwick,

 1 Warwick, 2 Northeastern

simulations, too. [Magnetism Matters](#page-0-0) 10 of 15 of 15

CrFeCoNi: Linear Response

▶ Correlations involving Fe significantly strengthened.

⁴Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. 7 053801 (2023)

C. D. Woodgate¹, D. Hedlund², L. H. Lewis²

[Magnetism Matters](#page-0-0) 11 of 15

CrFeCoNi: Atomistic Modelling

C. D. Woodgate¹, D. Hedlund², L. H. Lewis², J. B. Staunton¹

4Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. 7 053801 (2023). Rev. Mater. 7 053801 (2023). Rev. Mater
2023). Rev. Mater. 7 053801 (2023). Rev. Mater. 7 053801 (2023). Rev. Mater. 7 053801 (2023). Rev. Mater. 7 05 [Magnetism Matters](#page-0-0) 12 of 15 of 15

 1 Warwick, 2 Northeastern

Next Steps and Future Work

- ▶ Multicomponent alloys represent a *huge* playground.
- ▶ Approach is highly computationally efficient; all figures shown today can be reproduced in < 1000 CPU-hours. Materials discovery?
- \blacktriangleright Feed into more sophisticated techniques, e.g. use rapidly-generated configurations in training sets for machine-learned interatomic potentials⁵.

⁵Shenoy, Woodgate, Staunton, Bartók, Kermode, in preparation.

C. D. Woodgate¹, D. Hedlund², L. H. Lewis²

Take-Home Messages

When Modelling Alloys, Magnetism is *Important*

Nature of the magnetic state in an alloy can alter strength of interactions/correlations between elements.

Experimental Implications

Can some multicomponent alloys be processed in an applied magnetic field to tune atomic ordering?

Interface with other techniques

Can use computationally efficient approach to generate configurations for subsequent studies.

Acknowledgements

Funding

- ▶ C.D.W. supported by a studentship within EPSRC-funded CDT: [warwick.ac.uk/hetsys](#page-0-1)
- ▶ EPSRC (UK)
- \triangleright NSF (US)
- ▶ DOE (US)

People

University of Warwick, UK

- ▶ Christopher D. Woodgate
- ▶ Julie B. Staunton

Northeastern University, USA

▶ Laura H. Lewis

Our paper:

Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. 7 053801 (2023)

