

Magnetism Matters: Modelling Atomic Arrangements in Multicomponent Alloys

C. D. Woodgate¹, D. Hedlund², L. H. Lewis², J. B. Staunton¹

¹University of Warwick, Coventry, UK ²Northeastern University, Boston, USA

CCP5 AGM 2023

C. D. Woodgate¹, D. Hedlund², L. H. Lewis², J. B. Staunton¹

Multicomponent Alloys

- Steels, *e.g.* Fe₇₀Cr₂₀Ni₁₀.
- High Entropy Alloys (HEAs), e.g. CrMnFeCoNi, CrCoNi, NbMoTaW.
- HEAs: solid solution stabilised by large "entropy of mixing"

$$TS = -k_B T \sum_{\alpha} c_{\alpha} \log c_{\alpha}.$$
 (1)

At what temperature will order emerge? What is the nature of order? Short-range? Long-range? Materials properties?

C. D. Woodgate¹, D. Hedlund², L. H. Lewis², J. B. Staunton¹

Challenge for Modellers

- Space of possible atomic configurations is vast. Challenges conventional, supercell-based techniques.
- For alloys containing magnetic elements, e.g. CrCoNi, how should magnetism be treated?

Would like a computationally efficient modelling approach to assess phase stability.

Context	Modelling Approach	Results	Next Steps	Conclusions
00	●000	00000	o	

Our Description

- On lattice.
- Specify configuration by $\{\xi_{i\alpha}\}$.
- Interested in the average value of these, i.e. partial occupancies:

$$c_{i\alpha} \equiv \langle \xi_{i\alpha} \rangle$$

Perturb high-*T*, homogeneous state c_{iα} = c_α + Δc_{iα} and see what favourable correlations are¹².

¹Woodgate, Staunton, Phys. Rev. B 105 115124 (2022)
 ²Woodgate, Staunton, Phys. Rev. Mater. 7 013801 (2023)

C. D. Woodgate¹, D. Hedlund², L. H. Lewis², J. B. Staunton¹

Context	Modelling Approach	Results	Next Steps	Conclusions
00	○●○○	00000	O	

Concentration Waves

$$c_{i\alpha} = c_{\alpha} + \eta_{\alpha} \frac{1}{2} \left(e^{i\mathbf{q}\cdot\mathbf{R}_{i}} + e^{-i\mathbf{q}\cdot\mathbf{R}_{i}} \right), \quad \mathbf{q} = \left(\frac{1}{2}, \frac{1}{2}\right).$$

$$\eta = (0, 0) \qquad \eta = (0.25, -0.25) \qquad \eta = (0.5, -0.5)$$

¹Woodgate, Staunton, Phys. Rev. B 105 115124 (2022)
 ²Woodgate, Staunton, Phys. Rev. Mater. 7 013801 (2023)

C. D. Woodgate 1, D. Hedlund 2, L. H. Lewis 2, J. B. Staunton 1

Magnetism Matters

¹Warwick, ²Northeastern

Context	Modelling Approach	Results	Next Steps	Conclusions
00	○○●○	00000	O	00

Energetics: First-Principles

- Evaluate cost of fluctuations ab initio via DFT, using KKR-CPA and a linear response theory¹²³.
- Mean-field free energy:

$$G = \beta^{-1} \sum_{i\alpha} c_{i\alpha} \log c_{i\alpha} - \sum_{i\alpha}' \nu_{i\alpha} c_{i\alpha} + \langle \Omega_{el} \rangle_0 [\{c_{i\alpha}\}]$$

Important quantity:

$$S_{i\alpha;j\alpha'}^{(2)} \equiv \frac{\partial^2 \langle \Omega_{\mathsf{el}} \rangle_0}{\partial c_{i\alpha} \partial c_{j\alpha'}} \rightsquigarrow \Psi_{\alpha\alpha'}^{-1}(\mathbf{q})$$

¹Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022) ²Woodgate, Staunton, Phys. Rev. Mater. **7** 013801 (2023) ³Khan, Staunton, Stocks, Phys. Rev. B **93** 054206 (2016)

C. D. Woodgate¹, D. Hedlund², L. H. Lewis², J. B. Staunton¹

Context	Modelling Approach	Results	Next Steps	Conclusions
00	○○○●	00000	O	00

Energetics: Interatomic Potential

 Bragg-Williams Hamiltonian for atomistic modelling:

$$H(\{\xi_{i\alpha}\}) = \frac{1}{2} \sum_{\substack{i\alpha \\ j\alpha'}} V_{i\alpha;j\alpha'} \xi_{i\alpha} \xi_{j\beta}$$

- If *H* as above, $V_{i\alpha;j\alpha'} = -S^{(2)}_{i\alpha;j\alpha'}$ exactly.
- Generate physically-motivated configurations for subsequent study.

¹Woodgate, Staunton, Phys. Rev. B **105** 115124 (2022)

²Woodgate, Staunton, Phys. Rev. Mater. **7** 013801 (2023)

C. D. Woodgate¹, D. Hedlund², L. H. Lewis², J. B. Staunton¹

CrCoNi: Linear Response

Shape of modes and location of minimum altered.

⁴Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023) C. D. Woodgate¹, D. Hedlund², L. H. Lewis², J. B. Staunton¹ ¹Warwick, ²Northeastern

CrCoNi: Inferred Orderings

Different predicted chemical orderings based on magnetic state! Can we observe this experimentally in some systems?

⁴Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023)

C. D. Woodgate 1 , D. Hedlund 2 , L. H. Lewis 2 , J. B. Staunton 1

Context	Modelling Approach	Results	Next Steps	Conclusions
00		00●00	O	00

CrCoNi: Atomistic Modelling

C. D. Woodgate¹, D. Hedlund², L. H. Lewis², J. B. Staunton¹

¹Warwick, ²Northeastern

CrFeCoNi: Linear Response

Correlations involving Fe significantly strengthened.

⁴Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023) C. D. Woodgate¹, D. Hedlund², L. H. Lewis², J. B. Staunton¹ ¹Warwick, ²Northeastern

Context	Modelling Approach	Results	Next Steps	Conclusions
00		0000●	O	00

CrFeCoNi: Atomistic Modelling

C. D. Woodgate¹, D. Hedlund², L. H. Lewis², J. B. Staunton¹

Magnetism Matters

¹Warwick, ²Northeastern

Next Steps and Future Work

- Multicomponent alloys represent a huge playground.
- Approach is highly computationally efficient; all figures shown today can be reproduced in < 1000 CPU-hours. Materials discovery?
- Feed into more sophisticated techniques, e.g. use rapidly-generated configurations in training sets for machine-learned interatomic potentials⁵.

⁵Shenoy, Woodgate, Staunton, Bartók, Kermode, in preparation.

C. D. Woodgate¹, D. Hedlund², L. H. Lewis², J. B. Staunton¹

Take-Home Messages

When Modelling Alloys, Magnetism is *Important* Nature of the magnetic state in an alloy can alter strength of interactions/correlations between elements.

Experimental Implications

Can some multicomponent alloys be processed in an applied magnetic field to tune atomic ordering?

Interface with other techniques

Can use computationally efficient approach to generate configurations for subsequent studies.

Context	Modelling Approach	Results	Next Steps	Conclusions
00	0000	00000	o	

Acknowledgements

Funding

- C.D.W. supported by a studentship within EPSRC-funded CDT: warwick.ac.uk/hetsys
- EPSRC (UK)
- NSF (US)
- DOE (US)

People

University of Warwick, UK

- Christopher D. Woodgate
- Julie B. Staunton

Northeastern University, USA

Laura H. Lewis

Our paper:

Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. **7** 053801 (2023)

