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Multicomponent Alloys
▶ Steels, e.g. Fe70Cr20Ni10.
▶ High Entropy Alloys (HEAs), e.g. CrMnFeCoNi, CrCoNi,

NbMoTaW.
▶ HEAs: solid solution stabilised by large “entropy of mixing”

TS = −kBT
∑
α

cα log cα. (1)

▶ At what temperature will order emerge? What is the nature of
order? Short-range? Long-range? Materials properties?
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Challenge for Modellers

▶ Space of possible atomic configurations is vast. Challenges
conventional, supercell-based techniques.

▶ For alloys containing magnetic elements, e.g. CrCoNi, how
should magnetism be treated?

▶ Would like a computationally efficient modelling approach to
assess phase stability.
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Our Description

▶ On lattice.

▶ Specify configuration by {ξiα}.
▶ Interested in the average value of these, i.e.

partial occupancies:

ciα ≡ ⟨ξiα⟩

▶ Perturb high-T , homogeneous state
ciα = cα +∆ciα and see what favourable
correlations are12.

1Woodgate, Staunton, Phys. Rev. B 105 115124 (2022)
2Woodgate, Staunton, Phys. Rev. Mater. 7 013801 (2023)
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Concentration Waves

ciα = cα + ηα
1
2

(
e iq·Ri + e−iq·Ri

)
, q =

(
1
2 ,

1
2

)
.

η = (0, 0) η = (0.25,−0.25) η = (0.5,−0.5)

1Woodgate, Staunton, Phys. Rev. B 105 115124 (2022)
2Woodgate, Staunton, Phys. Rev. Mater. 7 013801 (2023)
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Energetics: First-Principles

▶ Evaluate cost of fluctuations ab initio via DFT,
using KKR-CPA and a linear response theory123.

▶ Mean-field free energy:

G = β−1
∑
iα

ciα log ciα−
∑′

iα

νiαciα+⟨Ωel⟩0[{ciα}]

▶ Important quantity:

S
(2)
iα; jα′ ≡

∂2⟨Ωel⟩0
∂ciα∂cjα′

⇝ Ψ−1
αα′(q)

1Woodgate, Staunton, Phys. Rev. B 105 115124 (2022)
2Woodgate, Staunton, Phys. Rev. Mater. 7 013801 (2023)
3Khan, Staunton, Stocks, Phys. Rev. B 93 054206 (2016)
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Energetics: Interatomic Potential

▶ Bragg-Williams Hamiltonian for atomistic
modelling:

H({ξiα}) =
1

2

∑
iα
jα′

Viα; jα′ ξiαξjβ

▶ If H as above, Viα; jα′ = −S
(2)
iα; jα′ exactly.

▶ Generate physically-motivated
configurations for subsequent study.

1Woodgate, Staunton, Phys. Rev. B 105 115124 (2022)
2Woodgate, Staunton, Phys. Rev. Mater. 7 013801 (2023)
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CrCoNi: Linear Response
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▶ Shape of modes and location of minimum altered.

4Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. 7 053801 (2023)
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CrCoNi: Inferred Orderings
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▶ Different predicted chemical orderings based on magnetic
state! Can we observe this experimentally in some systems?

4Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. 7 053801 (2023)
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CrCoNi: Atomistic Modelling
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▶ Different ordering and ordering temperature evident in MC
simulations, too.

4Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. 7 053801 (2023)
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CrFeCoNi: Linear Response
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▶ Correlations involving Fe significantly strengthened.

4Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. 7 053801 (2023)
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CrFeCoNi: Atomistic Modelling
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▶ Correlations involving Fe dramatically strengthened.
4Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater. 7 053801 (2023)
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Next Steps and Future Work
▶ Multicomponent alloys represent a huge playground.
▶ Approach is highly computationally efficient; all figures shown

today can be reproduced in < 1000 CPU-hours. Materials
discovery?

▶ Feed into more sophisticated techniques, e.g. use
rapidly-generated configurations in training sets for
machine-learned interatomic potentials5.

5Shenoy, Woodgate, Staunton, Bartók, Kermode, in preparation.
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Take-Home Messages

When Modelling Alloys, Magnetism is Important

Nature of the magnetic state in an alloy can alter strength of
interactions/correlations between elements.

Experimental Implications

Can some multicomponent alloys be processed in an applied
magnetic field to tune atomic ordering?

Interface with other techniques

Can use computationally efficient approach to generate
configurations for subsequent studies.
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