Modelling Atomic Ordering and Magnetocrystalline Anisotropy in L1₀ FeNi (Tetrataenite)

Christopher D. Woodgate^{1*}, Laura H. Lewis², Julie B. Staunton¹

¹University of Warwick, UK ²Northeastern University, USA **Christopher.Woodgate@warwick.ac.uk*

Christopher D. Woodgate Modelling L1₀ FeNi (Tetrataenite)

Talk Plan

- 1. Context: Challenges and Opportunities.
- 2. Modelling Philosophy.
- 3. Results.
 - 3.1 Capturing existing experimental data 1,2 .
 - 3.2 Modelling the influence of composition, strain, and applied field³.
- 4. Conclusions.

Christopher D. Woodgate

¹Woodgate, *et al.*, J. Appl. Phys. **134**, 163905 (2023).

²Woodgate, Lewis, Staunton, arXiv:2401.02809.

³Woodgate, Lewis, Staunton, in preparation.

Context: Challenges and Opportunities

Christopher D. Woodgate Modelling L1₀ FeNi (Tetr<u>ataenite)</u> University of Warwick, UK

3

Permanent Magnets: Myriad Applications

THE FIRST, AND LAST, WORLD MAGNET FISHING CHAMPIONSHIP

⁰ https://xkcd.	com/2944
----------------------------	----------

Christopher D. Woodgate

Context

Result

Permanent Magnets: Myriad Applications

- 'Hard' permanent magnet: resists being demagnetised.
- Particularly important for 'green' technologies.
- Amount of NdFeB typically required⁴ for:
 - Electric car drive motor: 1-3 kg.
 - Small, onshore wind turbine: 100-150 kg.
 - Large, offshore wind turbine: 2-4 t.

⁴Energy Policy **101**, 692 (2017).

Reliance on Rare-Earth Elements: Economic and Environmental Challenges

- ▶ Neodymium price⁴: \$11/kg in 2005, \$286/kg in 2011.
- Concerns around stability of global supply chain⁵.
- Environmental issues.

⁴Energy Policy **101**, 692 (2017).

⁵European Commission, Joint Research Centre. doi:10.2760/303258

Christopher D. Woodgate

Context 000000 Results

'Gap' in Performance Range of Permanent Magnets

- ► Figure of merit: 'maximum energy product', |BH|_{max}
- ▶ Two key permanent magnets for commercial applications⁶:
 - Nd₂Fe₁₄B: $|BH|_{max}$ up to 470 kJm⁻³
 - ▶ 'Ferrites' (*e.g.* $SrFe_{12}O_{19}$): $|BH|_{max}$ up to 38 kJm⁻³
- ▶ NdFeB up to 25× price of ferrite!

⁶Coey, Scripta Materialia **67** 524 (2012).

Context Modelling Philosophy Results Cor 00000 00 00000 00

$L1_0$ FeNi: A Candidate to Fill the 'Gap'?

- Case for L1₀ FeNi (tetrataenite)⁷:
 - Theoretical $|BH|_{max}$ of 335 kJm⁻³.
 - Good high-T performance¹. Curie temperature $T_C > 830 K$.
- BUT currently challenging to synthesise:
 - As cast, get disordered (A1) structure.
 - Need ordered L1₀ phase for hard magnetic properties.
- Can modelling help address this challenge?

¹Woodgate, *et al.*, J. Appl. Phys. **134**, 163905 (2023).
⁷Lewis *et al.*, J. Phys.: Condens. Matter **26** 064213 (2014).

Christopher D. Woodgate

Modelling Philosophy

Christopher D. Woodgate Modelling L1₀ FeNi (Tetrataenite) University of Warwick, UK

Context	Modelling Philosophy	Results	Conclusions
000000	⊙●	00000	000

Modelling Philosophy

- Permanent magnetism is an inherently quantum phenomenon.
- Model at the level of ions and electrons to capture:
 - Chemical bonds, atomic ordering.
 - Magnetic moments, magnetic anisotropy, Curie temperatures.
- Tool to do this: DFT (LDA, KKR-CPA, DLM Picture).
- Focus on intrinsic physical quantities: magnetocrystalline anisotropy energy, magnetisation, Curie temperature.

Christopher D. Woodgate Modelling L1₀ FeNi (Tetrataenite) University of Warwick, UK

Context	Modelling Philosophy	Results	Conclusic
000000	00	0●000	000

Magnetic Properties are Best for Pristine L1₀ Structure

- Hard magnetic properties maximised when maximal atomic ordering achieved¹.
- Thermal fluctuations are important¹.

¹Woodgate, *et al.*, J. Appl. Phys. **134**, 163905 (2023).

Magnetic Ordering Drives Atomic L10 Ordering

Ferromagnetic order crucial to formation of L1₀ phase².

Alloying additions could also help².

²Woodgate, Lewis, Staunton, arXiv:2401.02809.

Composition Controls Atomic Ordering Temperature

³Woodgate, Lewis, Staunton, in preparation.

Christopher D. Woodgate

Strain Accelerates A1 \rightarrow L1₀ Transformation

• Applied magnetic field also selects a single $L1_0$ variant^{1,3,8}.

¹Woodgate, et al., J. Appl. Phys. **134**, 163905 (2023).

³Woodgate, Lewis, Staunton, in preparation.

⁸Lewis, Stamenov, Adv. Sci. **11** 2302696 (2024).

Christopher D. Woodgate

Conclusions

Christopher D. Woodgate Modelling L1₀ FeNi (Tetrataenite) University of Warwick, UK

Take-Homes

FeNi: Candidate Rare-Earth-Free 'Gap' Magnet

Theoretical maximum energy product between that of NdFeB and oxide ferrites. Good finite-temperature performance. *But* bulk synthesis remains challenging.

Varying Composition Controls Atomic Ordering Temperature

Modelling suggests that moving off-stoichiometry towards Ni-rich compositions increases atomic ordering temperature.

Strain and Magnetic Field Accelerates Transition

DFT-predicted atomic ordering temperature is increased and (moreover) a single $L1_0$ variant is selected.

Acknowledgements People

University of Warwick, UK

- Christopher D. Woodgate
- Julie B. Staunton

Northeastern University, USA

Laura H. Lewis

University of Oxford, UK

Christopher E. Patrick

Funding

- EPSRC (UK)
- NSF (US)
- DOE (US)

