Predictive Modelling of the Structure and Phase Stability of High-Entropy Materials: Case Study of Al_xCrFeCoNi

Christopher D. Woodgate

University of Warwick, Coventry, UK

MRS Spring Meeting 2024

University of Warwick, UK

C. D. Woodgate Modelling the Phase Stability of High-Entropy Materials

Conclusions

High-Entropy Materials: Modelling Challenges

- Huge space of potential compositions, but most modelling results are specific to *one* particular composition.
- Even for one particular composition, need to inspect many possible atomic configurations.
- Magnetic elements: Fe, Mn, Ni, Co. Which magnetic state to model in DFT?

C. D. Woodgate

Conclusions

High-Entropy Materials: Modelling Solutions

A few options to model phase stability:

- 'Brute-force' DFT study: run DFT on many atomic configurations. *Hugely expensive*.
- Interatomic potentials, cluster expansions, MLIPs. Cheaper, but still need DFT training data.
- Effective medium theories: average over disorder in a (clever) physically meaningful way. Cheap!

Our Description

Our approach uses the last option: an effective medium theory.

- Evaluate internal energy of fully disordered alloy within DFT using Coherent Potential Approximation (CPA).
- Apply inhomogeneous chemical perturbation and assess energetic cost¹².
- Clever bit: do this using concentration waves, i.e. in k-space.

¹C. D. Woodgate, J. B. Staunton, Phys. Rev. B **105** 115124 (2022)

²C. D. Woodgate, J. B. Staunton, Phys. Rev. Mater 7 013801 (2023)

C. D. Woodgate

University of Warwick, UK

Inferring Orderings

Two options:

- Option 1: infer orderings directly.
 - Perturbative analysis
 - \rightarrow Taylor expansion of Gibbs free energy.
- Option 2: lattice-based atomistic simulations.
 - Perturbative analysis

 effective pair interactions.

$$H(\{\xi_{i\alpha}\}) = \frac{1}{2} \sum_{\substack{i\alpha\\j\alpha'}} V_{i\alpha;j\alpha'} \, \xi_{i\alpha} \xi_{j\beta}$$

³Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater 7 053801 (2023)

C. D. Woodgate

Successful Applications

- CrMnFeCoNi and derivatives.
 - C. D. Woodgate, J. B. Staunton, Phys. Rev. B 105 115124 (2022).
- VNbMoTaW and derivatives.
 - C. D. Woodgate, J. B. Staunton, Phys. Rev. Mater. 7 013801 (2023).
- Influcence of Magnetism on Atomic Ordering.
 - C. D. Woodgate, D. Hedlund, L. H. Lewis, J. B. Staunton, Phys. Rev. Mater. 7, 053801 (2023).
- Influence of Ti additions: Ti_xVNbMoTaW
 - C. D. Woodgate, J. B. Staunton, J Appl. Phys. 135 135106 (2024).
- ► Al_xCrFeCoNi 'Superalloy'.
 - C. D. Woodgate, G. A. Marchant, L. B. Pártay, J. B. Staunton, arXiv:2404.01373.

Case Study: Al_xCrFeCoNi

³Woodgate, Marchant, Pártay, Staunton, arXiv:2404.13173

C. D. Woodgate

University of Warwick, UK

Modelling Approad

Results

Al_xCrFeCoNi: Underlying Lattice

³Woodgate, Marchant, Pártay, Staunton, arXiv:2404.13173

C. D. Woodgate

University of Warwick, UK

Modelling Approac

Results

Al_xCrFeCoNi: Electronic Structure

³Woodgate, Marchant, Pártay, Staunton, arXiv:2404.13173

C. D. Woodgate

University of Warwick, UK

Modelling Approac

Results 000●00

Al_xCrFeCoNi: Perturbative Analysis

³Woodgate, Marchant, Pártay, Staunton, arXiv:2404.13173

C. D. Woodgate

University of Warwick, UK

Modelling Approac

Results 0000●0

Al_xCrFeCoNi: Inferred Orderings

³Woodgate, Marchant, Pártay, Staunton, arXiv:2404.13173

<u> </u>		١.	۱A.	1-	-	л.		4.4	
с.	υ		٧٧	υ	U	ц	ga	Le	

University of Warwick, UK

Al_xCrFeCoNi: Atomistic Modelling

(Cell duplicated $2 \times 2 \times 2$ times for clarity.)

³Woodgate, Marchant, Pártay, Staunton, arXiv:2404.13173

C. D. Woodgate

University of Warwick, UK

Take-Home Messages

Coherent Potential Approximation (CPA)

CPA provides a *powerful* tool for modelling the electronic structure of disordered, high-entropy systems for minimal computational cost.

Perturbative Analysis

Analysis of energetic cost of chemical fluctuations applied to homogeneous CPA medium can tell us about atomic ordering tendencies.

Superb Agreement with Experiment

For < 1000 core-hours, can predict phase behaviour across range of compositions and temperatures.

C. D. Woodgate

University of Warwick, UK

Modelling Approach

Results 000000 Conclusions

Acknowledgements

Funding

- C.D.W. supported by a studentship within EPSRC-funded CDT: warwick.ac.uk/hetsys
- EPSRC (UK)

Our paper: arXiv:2404.13173

People

Department of Physics, University of Warwick, UK

- Christopher D. Woodgate
- George A. Marchant
- Julie B. Staunton

Department of Chemistry, University of Warwick, UK

Livia B. Pártay

C. D. Woodgate

University of Warwick, UK

Upcoming Book:

Springer Series in Materials Science 346

Christopher D. Woodgate Modelling Atomic Arrangements in Multicomponent Alloys A Perturbative, First-Principles-Razed Approach

Modelling Atomic Arrangements ir Multicomponent Alloys

2

Springer Series in Materials Science 346

Christopher D. Woodgate

Modelling Atomic Arrangements in Multicomponent Alloys

A Perturbative, First-Principles-Based Approach

Springer

+ 783031L62020 • springer.com

C. D. Woodgate

University of Warwick, UK