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High-Entropy Materials: Modelling Challenges

▶ Huge space of potential
compositions, but most modelling
results are specific to one particular
composition.

▶ Even for one particular
composition, need to inspect many
possible atomic configurations.

▶ Magnetic elements: Fe, Mn, Ni,
Co. Which magnetic state to
model in DFT?
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High-Entropy Materials: Modelling Solutions

A few options to model phase stability:

▶ ‘Brute-force’ DFT study: run DFT
on many atomic configurations.
Hugely expensive.

▶ Interatomic potentials, cluster
expansions, MLIPs. Cheaper, but
still need DFT training data.

▶ Effective medium theories: average
over disorder in a (clever)
physically meaningful way. Cheap!
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Our Description

Our approach uses the last option: an effective
medium theory.

▶ Evaluate internal energy of fully
disordered alloy within DFT using
Coherent Potential Approximation (CPA).

▶ Apply inhomogeneous chemical
perturbation and assess energetic cost12.

▶ Clever bit: do this using concentration
waves, i.e. in k-space.

1C. D. Woodgate, J. B. Staunton, Phys. Rev. B 105 115124 (2022)
2C. D. Woodgate, J. B. Staunton, Phys. Rev. Mater 7 013801 (2023)
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Inferring Orderings

Two options:
▶ Option 1: infer orderings directly.

▶ Perturbative analysis
→ Taylor expansion of Gibbs free energy.

▶ Option 2: lattice-based atomistic
simulations.
▶ Perturbative analysis

→ effective pair interactions.
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3Woodgate, Hedlund, Lewis, Staunton, Phys. Rev. Mater 7 053801 (2023)
C. D. Woodgate University of Warwick, UK

Modelling the Phase Stability of High-Entropy Materials 5 of 15



Context Modelling Approach Results Conclusions

Successful Applications

▶ CrMnFeCoNi and derivatives.
▶ C. D. Woodgate, J. B. Staunton,

Phys. Rev. B 105 115124 (2022).

▶ VNbMoTaW and derivatives.
▶ C. D. Woodgate, J. B. Staunton,

Phys. Rev. Mater. 7 013801 (2023).

▶ Influcence of Magnetism on Atomic Ordering.
▶ C. D. Woodgate, D. Hedlund, L. H. Lewis, J. B. Staunton,

Phys. Rev. Mater. 7, 053801 (2023).

▶ Influence of Ti additions: TixVNbMoTaW
▶ C. D. Woodgate, J. B. Staunton,

J Appl. Phys. 135 135106 (2024).

▶ AlxCrFeCoNi ‘Superalloy’.
▶ C. D. Woodgate, G. A. Marchant, L. B. Pártay, J. B. Staunton,

arXiv:2404.01373.
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Case Study: AlxCrFeCoNi

3Woodgate, Marchant, Pártay, Staunton, arXiv:2404.13173
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AlxCrFeCoNi: Underlying Lattice
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3Woodgate, Marchant, Pártay, Staunton, arXiv:2404.13173
C. D. Woodgate University of Warwick, UK

Modelling the Phase Stability of High-Entropy Materials 8 of 15

https://doi.org/10.48550/arXiv.2404.13173


Context Modelling Approach Results Conclusions

AlxCrFeCoNi: Electronic Structure

3Woodgate, Marchant, Pártay, Staunton, arXiv:2404.13173
C. D. Woodgate University of Warwick, UK

Modelling the Phase Stability of High-Entropy Materials 9 of 15

https://doi.org/10.48550/arXiv.2404.13173


Context Modelling Approach Results Conclusions

AlxCrFeCoNi: Perturbative Analysis
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AlxCrFeCoNi: Inferred Orderings
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AlxCrFeCoNi: Atomistic Modelling
(Cell duplicated 2× 2× 2 times for clarity.)
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Take-Home Messages

Coherent Potential Approximation (CPA)

CPA provides a powerful tool for modelling the electronic structure
of disordered, high-entropy systems for minimal computational
cost.

Perturbative Analysis

Analysis of energetic cost of chemical fluctuations applied to
homogeneous CPA medium can tell us about atomic ordering
tendencies.

Superb Agreement with Experiment

For < 1000 core-hours, can predict phase behaviour across range
of compositions and temperatures.
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This book provides a comprehensive overview of  a computationally efficient 
approach for  modelling the  phase behaviour of  multicomponent alloys from  first 
principles, describing both short- and long-range atomic ordering tendencies. 
The  study of  multicomponent alloy systems, which combine three or more base 
elements in near-equal ratios, has garnered significant attention in materials science 
due to  the  potential for  the  creation of  novel materials with  superior properties 
for  a variety of  applications. High-entropy alloys, which contain four or more 
base elements, have emerged as a particularly fascinating subset of  these systems, 
demonstrating extraordinary strength and fracture resistance, among other desirable 
properties. The  book presents a novel modelling approach for  studying the  phase 
behaviour of these systems, which is based on a perturbative analysis of the internal 
energy of  the  disordered alloy as evaluated within the  Korringa–Kohn–Rostoker 
(KKR) formulation of  density functional theory (DFT), using the  coherent 
potential approximation (CPA) to  average over chemical disorder. Application 
of  a Landau-type theory to an approximate form of  the Gibbs free energy enables 
direct inference of chemical disorder/order transitions. In addition, the perturbative 
analysis facilitates extraction of  atom-atom effective pair interactions for  further 
atomistic simulations. The  connection between the  arrangement of  atoms in 
a material and its magnetic properties is also studied. By outlining and applying 
the proposed modelling techniques to  several systems of  interest, this book serves 
as a valuable resource for materials scientists, physicists, and chemists alike, seeking 
to understand and develop new alloy systems with enhanced materials properties.
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