Addressing Disorder

Modelling Alloys and Magnetic Materials Across Length Scales

Christopher D. Woodgate

School of Physics, University of Bristol, UK christopher.woodgate@bristol.ac.uk

> Northeastern University January 10, 2025

[Addressing Disorder](#page-43-0) 1

Talk Plan

- 1. Background and Motivation
	- 1.1 (Multicomponent) Alloys
	- 1.2 Magnetic Materials
	- 1.3 Modelling Challenges
- 2. Three Stories:
	- 2.1 High-Entropy Alloys: Phase Stability^{1,2}
	- 2.2 Permanent Magnets: Thermal effects^{3,4}
	- 2.3 Machine-Learned Interatomic Potentials⁵
- 3. Summary and Outlook

- ²Woodgate, Staunton, J. Appl. Phys. **135**[, 135106 \(2024\).](https://doi.org/10.1063/5.0200862)
- 3 Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. 134 [, 163905 \(2023\).](https://doi.org/10.1063/5.0169752)
- ⁴Woodgate, Lewis, Staunton, [npj Comput. Mater.](https://doi.org/10.1038/s41524-024-01435-y) 10 271 (2024).
- 5 Shenoy, Woodgate, Staunton *et al.*, [Phys. Rev. Mater.](https://doi.org/10.1103/PhysRevMaterials.8.033804) **8** 033804 (2024).

¹Woodgate, Staunton, [Phys. Rev. Mater.](https://doi.org/10.1103/PhysRevMaterials.7.013801) $7,013801$ (2023).

Background and Motivation

[Addressing Disorder](#page-0-0) 3

Alloys: Why Are We Interested?

So many of the materials around us are alloys.

- \triangleright Entire periods of human prehistory classified by use of alloys: 'Bronze Age', 'Iron Age'.
- ▶ Structural (steels, aluminium-based, titanium-based).
- Corrosion resistance (stainless steels).
- Magnetic (transformer cores, permanent magnets, magnetostrictive materials).
- ▶ Semiconductors (Band-gap tuning).

Atomic Arrangements: Substitutional vs Interstitial

- ▶ Alloy: mixture of two or more (typically metallic) elements.
- \triangleright Can be 'substitutional' or 'interstitial' (or both):
	- Substitutional: alloying atoms positioned randomly 'sharing' same lattice—they 'substitute' for one another. $E.g.$ Cu $+$ Au.
	- Interstitial: (smaller) alloying atoms squeeze into gaps—they sit at 'interstices'. $E.g.$ Fe + C.
- ▶ Today: only worry about substitutional alloys.

 \bigcirc \bigcirc \bigcirc 000000 000000

Atomic Arrangements: Phase Diagrams

- ▶ Also need to consider how atoms are arranged.
- ▶ Do I have a 'solid solution', an 'intermetallic', or 'phase segregation', depending on processing conditions:
	- 1. Solid solution: random distribution of atoms.
	- 2. Intermetallic: repeating arrangement of atoms.
	- 3. Phase segregation: different elements stay separate.
- ▶ Today: will talk about modelling this for multicomponent alloys.

 \Box \Box \Box \Box 00000 \bigcirc \bigcirc \bigcirc \bigcirc \cup \cup \cup \cup 000000

 $\begin{array}{ccc} & & \\ \textcirc & & & & \\ \textcirc & & & & \\$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc റററെ 0000 \bigcirc \bigcirc \bigcirc Solid Solution **Intermetallic** Segregation

Alloy Phase Diagram Example

CuAu—3d Transition Metal + 5d Transition Metal.

CuAu: Intermetallic $(L1_0)$ Phase

DFT Energy: -278894.253269 eV

CuAu: Disordered (A1) Phase

DFT Energy: -278894.077583 eV (Change of +0.176 eV/atom.)

Example of Property Affected: Residual Resistivity

Magnetic Materials

- ▶ Magnetic moments, most generally:
	- \blacktriangleright Hund's rules \rightarrow unpaired electrons.
	- Net spin polarisation (usually) localised around atoms.
	- Interactions between moments originate from 'sea' of electrons.
- ▶ Magnetism introduces a new degree of freedom

Modelling 'Real' Materials

For me, three main 'lines of attack':

- 1. Density functional theory (DFT).
	- ▶ Sub-atomic length scale—ions and electrons.
	- \blacktriangleright (Approximately) solve the electronic many-body problem.
	- ▶ Learn about electronic structure.
- 2. Interatomic potentials, atomistic models.
	- Atomic length scale—ions and electrons.
	- ▶ Learn about forces, energies.
- 3. Statistical physics.
	- Recover bulk, equillibrium properties.

Disorder Presents Modelling Challenges

- 1. Compositional disorder—alloys.
	- ▶ Solid solution—no meaningful primitive unit cell.
	- ▶ How to handle elements at arbitrary concentrations?
- 2. Magnetic disorder—finite temperature.
	- ▶ Again, broken translational symmetry.
	- Non-collinear spin arrangements?

In a magnetic alloy, we need to worry about both of these aspects!

Story 1: Phase Equilibria in High-Entropy Alloys

Christopher D. Woodgate School of Physics, University of Bristol, UK

[Addressing Disorder](#page-0-0) 14 November 14 Nov

High-Entropy Alloys: Background

▶ 'High-Entropy' Alloy

- ▶ First reported in 2004.
- \blacktriangleright Sufficiently many elements $(4+)$ in right concentrations (near-equiatomic) that 'entropy of mixing',

$$
TS = -k_B T \sum_{\alpha} c_{\alpha} \log c_{\alpha}, \qquad (1)
$$

makes 'significant' contribution to free energy.

- ▶ Often superior physical properties for applications.
- \triangleright Of fundamental physical interest, too.
- ▶ Question: How do atoms preferentially arrange themselves at a given temperature?

$$
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &
$$

High-Entropy Alloys: Phase Equilibria

Two options:

- 1. 'Ballpit' option:
	- ▶ Some kind of sampling algorithm on supercell (e.g. Metropolis Monte Carlo) to determine equilibria.
	- ▶ Get energies from DFT calculations, or cluster expansion, or interatomic potential.
- 2. 'Beachball' option:
	- ▶ Start from fully disordered system and assess the energetic cost of small chemical fluctuations.

Our Approach: Beachball Option

We start by describing the internal energy of the disordered alloy:

- ▶ Do this using the 'coherent potential approximation' (CPA).
- ▶ Computationally cheap while accurately capturing many features of disordered phase.
- ▶ Folklore: gets 'better' the more disordered the system is.

[Addressing Disorder](#page-0-0) 17

Concentration Waves: Describing Fluctuations $k=\frac{\pi}{a},\ \eta_{\alpha}=\frac{1}{\sqrt{2}}$ $_{\overline{2}}(1,-1)$

- \blacktriangleright How to represent chemical fluctuations compactly and meaningfully? Concentration waves.
- ▶ Illustrative, 1D example.
- Alloy $S^{(2)}$ theory⁶ tells me energetic cost of these fluctuations (in 3D!) using DFT and CPA.

 6 Woodgate, Staunton, [Physical Review B](https://doi.org/10.1103/PhysRevB.105.115124) 105, 115124 (2022).

 7 [Khan, Staunton, Stocks, Physical Review B](https://doi.org/10.1103/PhysRevB.93.054206) 93 054206 (2015)

[Addressing Disorder](#page-0-0) 18

Alloys: Inferring Ordering—Landau Theory

▶ Write down (approximate) free energy,

 $G = TS - uN + U$

$$
G = \beta^{-1} \sum_{i\alpha} c_{i\alpha} \log c_{i\alpha} - \sum_{i\alpha}^{\prime} \nu_{i\alpha} c_{i\alpha} + \langle \Omega_{el} \rangle_0 [\{c_{i\alpha}\}],
$$

and evaluate its derivative $(s)^3$.

- \triangleright At some temperature, derivative will go negative—infer an ordering here.
- ▶ Actually, in our case, is eigenvalue of Hessian—eigenvector tells me about ordering.

[Addressing Disorder](#page-0-0) 19

 6 Woodgate, Staunton, [Physical Review B](https://doi.org/10.1103/PhysRevB.105.115124) 105, 115124 (2022).

Alloys: Inferring Ordering—Monte Carlo Simulation

▶ Conveniently, can also map derivatives of internal energy back to a simple, pairwise form of alloy internal energy:

$$
H(\{\xi_{i\alpha}\})=\frac{1}{2}\sum_{\substack{i\alpha\\j\alpha'}}V_{i\alpha;j\alpha'}\,\xi_{i\alpha}\xi_{j\beta}
$$

 \blacktriangleright Can then use sampling techniques to fully explore phase space.

 6 Woodgate, Staunton, [Physical Review B](https://doi.org/10.1103/PhysRevB.105.115124) 105, 115124 (2022).

[Addressing Disorder](#page-0-0) 20

Alloy Phase Stability Overview

Disordered Alloy \rightarrow Effective medium \rightarrow Concentration waves

 1 Woodgate, Staunton, [Physical Review Materials](https://doi.org/10.1103/PhysRevMaterials.7.013801) 7, 013801 (2023). ²Woodgate, Staunton, [Journal of Applied Physics](https://doi.org/10.1063/5.0200862) 135 , 135106 (2024). 6 Woodgate, Staunton, [Physical Review B](https://doi.org/10.1103/PhysRevB.105.115124) 105, 115124 (2022). 8 Woodgate *et al.*, [npj Computational Materials](https://doi.org/10.1038/s41524-024-01445-w) 10, 271 (2024) 9 Woodgate et al., [Physical Review Materials](https://doi.org/10.1103/PhysRevMaterials.7.053801) 7, 053801 (2023).

Application: Refractory HEAs

[Addressing Disorder](#page-0-0) 22

Refractory High-Entropy Alloys: Context

- ▶ Prototypical BCC HEAs.
- ▶ Typically V, Nb, Mo, Ta, W.

 \triangleright Of interest for high-T, high-radiation applications.

Focus on 4-component NbMoTaW.

¹Woodgate, Staunton, [Physical Review Materials](https://doi.org/10.1103/PhysRevMaterials.7.013801) 7, 013801 (2023).

²Woodgate, Staunton, [Journal of Applied Physics](https://doi.org/10.1063/5.0200862) 135 , 135106 (2024).

[Addressing Disorder](#page-0-0) 23

Refractory High-Entropy Alloys: Electronic Structure

Electronic density of states around E_F within KKR-CPA.

A2 NbMoTaW

1. Woodgate, School of [Physical Review Materials](https://doi.org/10.1103/PhysRevMaterials.7.013801) 7, 013801 (2023). School of Physic
National Review Materials 7, 013801 (2023). Christopher D. Woodgate School of Physics, University of Bristol, UK

Refractory High-Entropy Alloys: Landau Theory

Minimum at H indicates B2-like ordering. Calculated $T_{\text{ord}} = 559 \text{ K}, \eta_{\alpha} = (-0.42, 0.57, -0.57, 0.42).$

 1 Woodgate, Staunton, [Physical Review Materials](https://doi.org/10.1103/PhysRevMaterials.7.013801) 7, 013801 (2023). ²Woodgate, Staunton, [Journal of Applied Physics](https://doi.org/10.1063/5.0200862) 135 , 135106 (2024).

[Addressing Disorder](#page-0-0) 25

Refractory High-Entropy Alloys: Effective Pair Interactions

 1 Woodgate, Staunton, [Physical Review Materials](https://doi.org/10.1103/PhysRevMaterials.7.013801) 7, 013801 (2023). ²Woodgate, Staunton, [Journal of Applied Physics](https://doi.org/10.1063/5.0200862) 135 , 135106 (2024).

[Addressing Disorder](#page-0-0) 26

Refractory High-Entropy Alloys: Monte Carlo Simulation

 1 Woodgate, Staunton, [Physical Review Materials](https://doi.org/10.1103/PhysRevMaterials.7.013801) 7, 013801 (2023). ²Woodgate, Staunton, [Journal of Applied Physics](https://doi.org/10.1063/5.0200862) 135 , 135106 (2024).

[Addressing Disorder](#page-0-0) 27

Refractory High-Entropy Alloys: Addition of V and Ti

\blacktriangleright Addition of V.

- \blacktriangleright Charge transfer/bandwidth difference between 3d and 4d/5d elements drives B32 ordering.
- ▶ Addition of Ti (to improve ductility)²
	- \triangleright B32-like ordering tendencies mixed with increased propensity for phase segregation.

High 2 $LowT$

 1 Woodgate, Staunton, [Physical Review Materials](https://doi.org/10.1103/PhysRevMaterials.7.013801) 7, 013801 (2023). ²Woodgate, Staunton, [Journal of Applied Physics](https://doi.org/10.1063/5.0200862) 135 , 135106 (2024).

[Addressing Disorder](#page-0-0) 28

More Information? Book

Christopher D. Woodgate

Springer Series in Materials Science 346

Modelling Atomic Arrangements in Multicomponent **Alloys**

A Perturbative, First-Principles-Based Approach

 \mathcal{D} Springer

¹⁰Woodgate, Springer Series in Materials Science, Vol. 346. (Springer Nature Switzerland, Cham, 2024).

[Addressing Disorder](#page-0-0) 29

Take-Home

Story 1: Concentration Waves in High-Entropy Alloys Concentration waves provide a powerful tool for exploring HEA phase space.

Story 2: Finite Temperature Effects in Magnets

Christopher D. Woodgate School of Physics, University of Bristol, UK

[Addressing Disorder](#page-0-0) 31

Permanent Magnets: Why Do We Care?

- ▶ 'Hard' permanent magnet: resists being demagnetised.
- ▶ Particularly important for 'green' technologies.
- \blacktriangleright Currently heavily reliant on rare-earth elements, Nd, Sm, \dots
- ▶ Seeking alternative materials to diversity supply chain and fill current capability 'gap'.

L10 FeNi: A Potential 'Gap' Magnet?

- ▶ Case for $L1_0$ FeNi (tetrataenite)⁷:
	- ▶ Theoretical $|BH|_{\text{max}}$ of 335 kJm⁻³.
	- Good high- \overline{T} performance¹. Curie temperature $T_C > 830$ K.
- \triangleright BUT currently challenging to synthesise:
	- \blacktriangleright As cast, get disordered $(A1)$ structure.
	- \blacktriangleright Need ordered $L1_0$ phase for hard magnetic properties.
- ▶ Can modelling help address this challenge?

¹Woodgate, *et al.*, J. Appl. Phys. **134**[, 163905 \(2023\).](https://doi.org/10.1063/5.0169752) 11 Lewis et al., J. Phys.: Condens. Matter 26 064213 (2014).

Christopher D. Woodgate School of Physics, University of Bristol, UK

[Addressing Disorder](#page-0-0) 33

 $L1₀$ FeNi: Temperature Dependence of Anisotropy

 \triangleright Modelled the temperature dependence of magnetic properties³.

 \blacktriangleright Have also worked on controlling atomic 'layering'⁴.

 3 Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. 134 [, 163905 \(2023\).](https://doi.org/10.1063/5.0169752) 4 Woodgate, Lewis, Staunton, [npj Comput. Mater.](https://doi.org/10.1038/s41524-024-01435-y) 10 271 (2024).

[Addressing Disorder](#page-0-0) 34

Take-Home

Story 2: $L1_0$ FeNi

Need to incorporate both magnetic and compositional disorder to compare with experiment.

Story 3: MLIPs for Alloys

[Addressing Disorder](#page-0-0) 36

DFT is great, but 'expensive'

- \triangleright DFT \rightarrow learn about materials with QM accuracy.
- ▶ Can get forces, energies, magnetic moments, etc.
- ▶ But calculations are expensive to run for large systems.
	- \blacktriangleright Usually $O(N^3)$ scaling.
	- ▶ 'Linear scaling' methods have higher base cost.
- ▶ One 'single point' calculation on a largeish supercell? \sim 1000 core hours.

Do we always need to do DFT?

- \blacktriangleright In most studies, we examine many 'similar' atomic configurations.
- ▶ Forces/energies should vary smoothly between configurations.
- Q: Can we 'learn' this unknown 'potential energy surface'?
- ▶ A: Yes, many established ways of doing do.

¹²Image credit: Livia Bartok-Partay, University of Warwick

Christopher D. Woodgate The School of Physics, University of Bristol, UK

[Addressing Disorder](#page-0-0) 38

Example: Stainless Steel, Fe₇Cr₂Ni

- ▶ End goal: study failure of material, which requires long length/time scales.
- \triangleright We developed a Gaussian Approximation Potential (GAP).
- ▶ Incorporated magnetic degree of freedom on Fe atoms—'Spin GAP'.

 5 Shenoy, Woodgate, Staunton *et al.*, [Phys. Rev. Mater.](https://doi.org/10.1103/PhysRevMaterials.8.033804) **8** 033804 (2024).

[Addressing Disorder](#page-0-0) 39

Model is as accurate as DFT with much-reduced cost

 \blacktriangleright Can model elastic properties, vacancies, short-range order, ...

 5 Shenoy, Woodgate, Staunton *et al.*, [Phys. Rev. Mater.](https://doi.org/10.1103/PhysRevMaterials.8.033804) **8** 033804 (2024).

[Addressing Disorder](#page-0-0) 40

Take-Home

Story 3: Machine-Learning for Materials Modelling

Machine-learned interatomic potentials can help us model magnetic materials accurately at reduced cost.

Summary and Outlook

[Addressing Disorder](#page-0-0) 42

Summary

Story 1: Concentration Waves in High-Entropy Alloys Concentration waves provide a powerful tool for exploring HEA phase space.

Story 2: $L1_0$ FeNi

Need to incorporate both magnetic and compositional disorder to compare with experiment.

Story 3: Machine-Learning for Materials Modelling

Machine-learned interatomic potentials can help us model magnetic materials accurately at reduced cost.

Acknowledgements People

University of Bristol, UK

Christopher D. Woodgate

University of Warwick, UK

- ▶ Lakshmi Shenoy
- Albert P. Bartók
- ▶ James R. Kermode
- Julie B. Staunton

Northeastern University, USA

▶ Laura H. Lewis

University of Oxford, UK

Christopher E. Patrick

Funding

- ▶ EPSRC (UK)
- ▶ CoSeC (UK)
- ▶ NSF (US)
- DOE (US)

Engineering and Physical Sciences Research Council

[Addressing Disorder](#page-0-0) 44