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Talk Plan

1. Background and Motivation

1.1 (Multicomponent) Alloys
1.2 Magnetic Materials
1.3 Modelling Challenges

2. Three Stories:

2.1 High-Entropy Alloys: Phase Stability1,2

2.2 Permanent Magnets: Thermal effects3,4

2.3 Machine-Learned Interatomic Potentials5

3. Summary and Outlook

1Woodgate, Staunton, Phys. Rev. Mater. 7, 013801 (2023).
2Woodgate, Staunton, J. Appl. Phys. 135, 135106 (2024).
3Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. 134, 163905 (2023).
4Woodgate, Lewis, Staunton, npj Comput. Mater. 10 271 (2024).
5Shenoy, Woodgate, Staunton et al., Phys. Rev. Mater. 8 033804 (2024).
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Alloys: Why Are We Interested?
So many of the materials around us are alloys.

▶ Entire periods of human prehistory classified by use of alloys:
‘Bronze Age’, ‘Iron Age’.

▶ Structural (steels, aluminium-based, titanium-based).

▶ Corrosion resistance (stainless steels).

▶ Magnetic (transformer cores, permanent magnets,
magnetostrictive materials).

▶ Semiconductors (Band-gap tuning).
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Atomic Arrangements: Substitutional vs Interstitial
▶ Alloy: mixture of two or more (typically metallic) elements.
▶ Can be ‘substitutional’ or ‘interstitial’ (or both):

▶ Substitutional: alloying atoms positioned randomly ‘sharing’ same
lattice—they ‘substitute’ for one another. E.g. Cu + Au.

▶ Interstitial: (smaller) alloying atoms squeeze into gaps—they sit at
‘interstices’. E.g. Fe + C.

▶ Today: only worry about substitutional alloys.

Substitutional BothInterstitial
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Atomic Arrangements: Phase Diagrams
▶ Also need to consider how atoms are arranged.
▶ Do I have a ‘solid solution’, an ‘intermetallic’, or ‘phase

segregation’, depending on processing conditions:

1. Solid solution: random distribution of atoms.
2. Intermetallic: repeating arrangement of atoms.
3. Phase segregation: different elements stay separate.

▶ Today: will talk about modelling this for multicomponent alloys.

Solid Solution SegregationIntermetallic
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Alloy Phase Diagram Example

CuAu—3d Transition Metal + 5d Transition Metal.
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CuAu: Intermetallic (L10) Phase

DFT Energy: −278894.253269 eV
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CuAu: Disordered (A1) Phase

DFT Energy: −278894.077583 eV (Change of +0.176 eV/atom.)
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Example of Property Affected: Residual Resistivity
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Magnetic Materials
▶ Magnetic moments, most generally:

▶ Hund’s rules → unpaired electrons.
▶ Net spin polarisation (usually) localised around atoms.
▶ Interactions between moments originate from ‘sea’ of electrons.

▶ Magnetism introduces a new degree of freedom

Christopher D. Woodgate School of Physics, University of Bristol, UK

Addressing Disorder 11



Background and Motivation High-Entropy Alloys Permanent Magnets MLIPs Summary and Outlook

Modelling ‘Real’ Materials

For me, three main ‘lines of attack’:

1. Density functional theory (DFT).
▶ Sub-atomic length scale—ions and

electrons.
▶ (Approximately) solve the electronic

many-body problem.
▶ Learn about electronic structure.

2. Interatomic potentials, atomistic models.
▶ Atomic length scale—ions and electrons.
▶ Learn about forces, energies.

3. Statistical physics.
▶ Recover bulk, equillibrium properties.
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Disorder Presents Modelling Challenges

1. Compositional disorder—alloys.
▶ Solid solution—no meaningful primitive unit

cell.
▶ How to handle elements at arbitrary

concentrations?

2. Magnetic disorder—finite temperature.
▶ Again, broken translational symmetry.
▶ Non-collinear spin arrangements?

In a magnetic alloy, we need to worry about both
of these aspects!
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Story 1: Phase Equilibria in
High-Entropy Alloys
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High-Entropy Alloys: Background

▶ ‘High-Entropy’ Alloy
▶ First reported in 2004.
▶ Sufficiently many elements (4+) in right

concentrations (near-equiatomic) that ‘entropy of
mixing’,

TS = −kBT
∑
α

cα log cα, (1)

makes ‘significant’ contribution to free energy.
▶ Often superior physical properties for applications.
▶ Of fundamental physical interest, too.

▶ Question: How do atoms preferentially arrange
themselves at a given temperature?
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High-Entropy Alloys: Phase Equilibria
Two options:

1. ‘Ballpit’ option:
▶ Some kind of sampling algorithm on supercell (e.g. Metropolis

Monte Carlo) to determine equilibria.
▶ Get energies from DFT calculations, or cluster expansion, or

interatomic potential.

2. ‘Beachball’ option:
▶ Start from fully disordered system and assess the energetic

cost of small chemical fluctuations.
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Our Approach: Beachball Option

We start by describing the internal energy of the disordered alloy:

▶ Do this using the ‘coherent potential approximation’ (CPA).

▶ Computationally cheap while accurately capturing many
features of disordered phase.

▶ Folklore: gets ‘better’ the more disordered the system is.
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Concentration Waves: Describing Fluctuations

▶ How to represent chemical
fluctuations compactly and
meaningfully?
Concentration waves.

▶ Illustrative, 1D example.

▶ Alloy S (2) theory6 tells me
energetic cost of these
fluctuations (in 3D!) using
DFT and CPA.

k = π
a , ηα = 1√

2
(1,−1)

6Woodgate, Staunton, Physical Review B 105, 115124 (2022).
7Khan, Staunton, Stocks, Physical Review B 93 054206 (2015)
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Alloys: Inferring Ordering—Landau Theory

▶ Write down (approximate) free energy,

G = TS − µN + U

G = β−1
∑
iα

ciα log ciα−
∑′

iα

νiαciα+⟨Ωel⟩0[{ciα}],

and evaluate its derivative(s)3.

▶ At some temperature, derivative will go
negative—infer an ordering here.

▶ Actually, in our case, is eigenvalue of
Hessian—eigenvector tells me about ordering.

6Woodgate, Staunton, Physical Review B 105, 115124 (2022).
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Alloys: Inferring Ordering—Monte Carlo Simulation

▶ Conveniently, can also map
derivatives of internal energy
back to a simple, pairwise
form of alloy internal energy:

H({ξiα}) =
1

2

∑
iα
jα′

Viα; jα′ ξiαξjβ

▶ Can then use sampling
techniques to fully explore
phase space.
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6Woodgate, Staunton, Physical Review B 105, 115124 (2022).
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Alloy Phase Stability Overview

Disordered Alloy → Effective medium → Concentration waves

1Woodgate, Staunton, Physical Review Materials 7, 013801 (2023).
2Woodgate, Staunton, Journal of Applied Physics 135, 135106 (2024).
6Woodgate, Staunton, Physical Review B 105, 115124 (2022).
8Woodgate et al., npj Computational Materials 10, 271 (2024)
9Woodgate et al., Physical Review Materials 7, 053801 (2023).
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Application: Refractory HEAs
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Refractory High-Entropy Alloys: Context
▶ Prototypical BCC HEAs.

▶ Typically V, Nb, Mo, Ta, W.

▶ Of interest for high-T , high-radiation applications.

▶ Focus on 4-component NbMoTaW.
1Woodgate, Staunton, Physical Review Materials 7, 013801 (2023).
2Woodgate, Staunton, Journal of Applied Physics 135, 135106 (2024).
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Refractory High-Entropy Alloys: Electronic Structure
Electronic density of states around EF within KKR-CPA.
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Refractory High-Entropy Alloys: Landau Theory
Minimum at H indicates B2-like ordering. Calculated
Tord = 559 K, ηα = (−0.42, 0.57,−0.57, 0.42).
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2Woodgate, Staunton, Journal of Applied Physics 135, 135106 (2024).
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Refractory High-Entropy Alloys: Effective Pair Interactions
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2Woodgate, Staunton, Journal of Applied Physics 135, 135106 (2024).
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Refractory High-Entropy Alloys: Monte Carlo Simulation
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1Woodgate, Staunton, Physical Review Materials 7, 013801 (2023).
2Woodgate, Staunton, Journal of Applied Physics 135, 135106 (2024).
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Refractory High-Entropy Alloys: Addition of V and Ti

▶ Addition of V:
▶ Charge transfer/bandwidth

difference between 3d and 4d/5d
elements drives B32 ordering.

▶ Addition of Ti (to improve
ductility)2

▶ B32-like ordering tendencies
mixed with increased propensity
for phase segregation.
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1Woodgate, Staunton, Physical Review Materials 7, 013801 (2023).
2Woodgate, Staunton, Journal of Applied Physics 135, 135106 (2024).
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More Information? Book

10Woodgate, Springer Series in Materials Science, Vol. 346. (Springer Nature
Switzerland, Cham, 2024).
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Take-Home

Story 1: Concentration Waves in High-Entropy Alloys

Concentration waves provide a powerful tool for exploring HEA
phase space.
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Story 2: Finite Temperature
Effects in Magnets
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Permanent Magnets: Why Do We Care?

▶ ‘Hard’ permanent magnet: resists being demagnetised.

▶ Particularly important for ‘green’ technologies.

▶ Currently heavily reliant on rare-earth elements, Nd, Sm, . . .

▶ Seeking alternative materials to diversity supply chain and fill
current capability ‘gap’.
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L10 FeNi: A Potential ‘Gap’ Magnet?
▶ Case for L10 FeNi (tetrataenite)7:

▶ Theoretical |BH|max of 335 kJm−3.
▶ Good high-T performance1. Curie temperature TC > 830 K .

▶ BUT currently challenging to synthesise:
▶ As cast, get disordered (A1) structure.
▶ Need ordered L10 phase for hard magnetic properties.

▶ Can modelling help address this challenge?

1Woodgate, et al., J. Appl. Phys. 134, 163905 (2023).
11Lewis et al., J. Phys.: Condens. Matter 26 064213 (2014).
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L10 FeNi: Temperature Dependence of Anisotropy

▶ Modelled the temperature dependence of magnetic
properties3.
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▶ Have also worked on controlling atomic ‘layering’4.

3Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. 134, 163905 (2023).
4Woodgate, Lewis, Staunton, npj Comput. Mater. 10 271 (2024).
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Take-Home

Story 2: L10 FeNi

Need to incorporate both magnetic and compositional disorder to
compare with experiment.
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Story 3: MLIPs for Alloys
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DFT is great, but ‘expensive’
▶ DFT → learn about materials with QM accuracy.

▶ Can get forces, energies, magnetic moments, etc.
▶ But calculations are expensive to run for large systems.

▶ Usually O(N3) scaling.
▶ ‘Linear scaling’ methods have higher base cost.

▶ One ‘single point’ calculation on a largeish supercell?
∼1000 core hours.
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Do we always need to do DFT?
▶ In most studies, we examine many ‘similar’ atomic

configurations.

▶ Forces/energies should vary smoothly between configurations.

▶ Q: Can we ‘learn’ this unknown ‘potential energy surface’?

▶ A: Yes, many established ways of doing do.

12Image credit: Livia Bartok-Partay, University of Warwick
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Example: Stainless Steel, Fe7Cr2Ni
▶ End goal: study failure of material,

which requires long length/time scales.

▶ We developed a Gaussian
Approximation Potential (GAP).

▶ Incorporated magnetic degree of
freedom on Fe atoms—‘Spin GAP’.

5Shenoy, Woodgate, Staunton et al., Phys. Rev. Mater. 8 033804 (2024).

Christopher D. Woodgate School of Physics, University of Bristol, UK

Addressing Disorder 39

https://doi.org/10.1103/PhysRevMaterials.8.033804


Background and Motivation High-Entropy Alloys Permanent Magnets MLIPs Summary and Outlook

Model is as accurate as DFT with much-reduced cost

▶ Can model elastic properties, vacancies, short-range order, . . .

5Shenoy, Woodgate, Staunton et al., Phys. Rev. Mater. 8 033804 (2024).
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Take-Home

Story 3: Machine-Learning for Materials Modelling

Machine-learned interatomic potentials can help us model
magnetic materials accurately at reduced cost.
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Summary and Outlook
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Summary

Story 1: Concentration Waves in High-Entropy Alloys

Concentration waves provide a powerful tool for exploring HEA
phase space.

Story 2: L10 FeNi

Need to incorporate both magnetic and compositional disorder to
compare with experiment.

Story 3: Machine-Learning for Materials Modelling

Machine-learned interatomic potentials can help us model
magnetic materials accurately at reduced cost.
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