Permanent Magnets

MLIPs 000000 Summary and Outlook

Addressing Disorder

Modelling Alloys and Magnetic Materials Across Length Scales

Christopher D. Woodgate

School of Physics, University of Bristol, UK christopher.woodgate@bristol.ac.uk

> Northeastern University January 10, 2025

Christopher D. Woodgate

Addressing Disorder

Permanent Magnets

MLIPs 000000 Summary and Outlook

Talk Plan

- 1. Background and Motivation
 - 1.1 (Multicomponent) Alloys
 - 1.2 Magnetic Materials
 - 1.3 Modelling Challenges
- 2. Three Stories:
 - 2.1 High-Entropy Alloys: Phase Stability^{1,2}
 - 2.2 Permanent Magnets: Thermal effects^{3,4}
 - 2.3 Machine-Learned Interatomic Potentials⁵
- 3. Summary and Outlook

Addressing Disorder

¹Woodgate, Staunton, Phys. Rev. Mater. 7, 013801 (2023).

²Woodgate, Staunton, J. Appl. Phys. **135**, 135106 (2024).

³Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. **134**, 163905 (2023).

⁴Woodgate, Lewis, Staunton, npj Comput. Mater. **10** 271 (2024).

⁵Shenoy, Woodgate, Staunton *et al.*, Phys. Rev. Mater. **8** 033804 (2024).

Background and Motivation

Christopher D. Woodgate

Addressing Disorder

Alloys: Why Are We Interested?

So many of the materials around us are alloys.

- Entire periods of human prehistory classified by use of alloys: 'Bronze Age', 'Iron Age'.
- Structural (steels, aluminium-based, titanium-based).
- Corrosion resistance (stainless steels).
- Magnetic (transformer cores, permanent magnets, magnetostrictive materials).
- Semiconductors (Band-gap tuning).

Atomic Arrangements: Substitutional vs Interstitial

- Alloy: mixture of two or more (typically metallic) elements.
- Can be 'substitutional' or 'interstitial' (or both):
 - Substitutional: alloying atoms positioned randomly 'sharing' same lattice—they 'substitute' for one another. *E.g.* Cu + Au.
 - Interstitial: (smaller) alloying atoms squeeze into gaps—they sit at 'interstices'. E.g. Fe + C.
- Today: only worry about substitutional alloys.

Substitutional

Permanent Magnets

MLIPs 000000 Summary and Outlook

Atomic Arrangements: Phase Diagrams

- Also need to consider how atoms are arranged.
- Do I have a 'solid solution', an 'intermetallic', or 'phase segregation', depending on processing conditions:
 - 1. Solid solution: random distribution of atoms.
 - 2. Intermetallic: repeating arrangement of atoms.
 - 3. Phase segregation: different elements stay separate.
- Today: will talk about modelling this for multicomponent alloys.

Solid Solution

Permanent Magnets 00000 MLIPs 000000 Summary and Outlook

Alloy Phase Diagram Example

CuAu—3d Transition Metal + 5d Transition Metal.

Permanent Magnets 00000 MLIPs 000000 Summary and Outlook

CuAu: Intermetallic (L1₀) Phase

DFT Energy: -278894.253269 eV

Christopher D. Woodgate

Addressing Disorder

Permanent Magnets 00000 MLIPs 000000 Summary and Outlook

CuAu: Disordered (A1) Phase

DFT Energy: -278894.077583 eV (Change of +0.176 eV/atom.)

Permanent Magnets

MLIPs 000000 Summary and Outlook

Example of Property Affected: Residual Resistivity

Magnetic Materials

- Magnetic moments, most generally:
 - Hund's rules \rightarrow unpaired electrons.
 - Net spin polarisation (usually) localised around atoms.
 - Interactions between moments originate from 'sea' of electrons.
- Magnetism introduces a new degree of freedom

Permanent Magnets

MLIPs 000000 Summary and Outlook

Modelling 'Real' Materials

For me, three main 'lines of attack':

- 1. Density functional theory (DFT).
 - Sub-atomic length scale—ions and electrons.
 - (Approximately) solve the electronic many-body problem.
 - Learn about electronic structure.
- 2. Interatomic potentials, atomistic models.
 - Atomic length scale—ions and electrons.
 - Learn about forces, energies.
- 3. Statistical physics.
 - Recover bulk, equillibrium properties.

Permanent Magnets 00000 MLIPs 000000 Summary and Outlook

Disorder Presents Modelling Challenges

- 1. Compositional disorder—alloys.
 - Solid solution—no meaningful primitive unit cell.
 - How to handle elements at arbitrary concentrations?
- 2. Magnetic disorder—finite temperature.
 - Again, broken translational symmetry.
 - Non-collinear spin arrangements?
- In a magnetic alloy, we need to worry about both of these aspects!

Story 1: Phase Equilibria in High-Entropy Alloys

Christopher D. Woodgate

School of Physics, University of Bristol, UK

Addressing Disorder

Permanent Magnets 20000 MLIPs 000000 Summary and Outlook

High-Entropy Alloys: Background

'High-Entropy' Alloy

- First reported in 2004.
- Sufficiently many elements (4+) in right concentrations (near-equiatomic) that 'entropy of mixing',

$$TS = -k_B T \sum_{\alpha} c_{\alpha} \log c_{\alpha}, \qquad (1)$$

makes 'significant' contribution to free energy.

- Often superior physical properties for applications.
- Of fundamental physical interest, too.
- Question: How do atoms preferentially arrange themselves at a given temperature?

High-Entropy Alloys: Phase Equilibria

Two options:

- 1. 'Ballpit' option:
 - Some kind of sampling algorithm on supercell (e.g. Metropolis Monte Carlo) to determine equilibria.
 - Get energies from DFT calculations, or cluster expansion, or interatomic potential.
- 2. 'Beachball' option:
 - Start from fully disordered system and assess the energetic cost of small chemical fluctuations.

Our Approach: Beachball Option

We start by describing the internal energy of the disordered alloy:

- ▶ Do this using the 'coherent potential approximation' (CPA).
- Computationally cheap while accurately capturing many features of disordered phase.
- ► Folklore: gets 'better' the more disordered the system is.

Christopher D. Woodgate Addressing Disorder

Permanent Magnets 20000 MLIPs 000000 Summary and Outlook

Concentration Waves: Describing Fluctuations $k = \frac{\pi}{a}, \eta_{\alpha} = \frac{1}{\sqrt{2}}(1, -1)$

- How to represent chemical fluctuations compactly and meaningfully? Concentration waves.
- Illustrative, 1D example.
- Alloy S⁽²⁾ theory⁶ tells me energetic cost of these fluctuations (in 3D!) using DFT and CPA.

⁶Woodgate, Staunton, Physical Review B **105**, 115124 (2022).

⁷Khan, Staunton, Stocks, Physical Review B **93** 054206 (2015)

Christopher D. Woodgate

Addressing Disorder

Summary and Outlook

Alloys: Inferring Ordering—Landau Theory

Write down (approximate) free energy,

$$G = TS - \mu N + U$$

$$G = \beta^{-1} \sum_{i\alpha} c_{i\alpha} \log c_{i\alpha} - \sum_{i\alpha}' \nu_{i\alpha} c_{i\alpha} + \langle \Omega_{el} \rangle_0 [\{c_{i\alpha}\}],$$

and evaluate its derivative $(s)^3$.

- At some temperature, derivative will go negative—infer an ordering here.
- Actually, in our case, is eigenvalue of Hessian—eigenvector tells me about ordering.

Christopher D. Woodgate

Addressing Disorder

⁶Woodgate, Staunton, Physical Review B **105**, 115124 (2022).

MLIPs 000000 Summary and Outlook

Alloys: Inferring Ordering—Monte Carlo Simulation

Conveniently, can also map derivatives of internal energy back to a simple, pairwise form of alloy internal energy:

$$H(\{\xi_{i\alpha}\}) = \frac{1}{2} \sum_{\substack{i\alpha\\j\alpha'}} V_{i\alpha;j\alpha'} \,\xi_{i\alpha}\xi_{j\beta}$$

 Can then use sampling techniques to fully explore phase space.

⁶Woodgate, Staunton, Physical Review B **105**, 115124 (2022).

Christopher D. Woodgate

Addressing Disorder

Permanent Magnets 00000 MLIPs 000000 Summary and Outlook

Alloy Phase Stability Overview

 $\mathsf{Disordered}\ \mathsf{Alloy} \to \mathsf{Effective}\ \mathsf{medium} \to \mathsf{Concentration}\ \mathsf{waves}$

¹Woodgate, Staunton, Physical Review Materials 7, 013801 (2023).
²Woodgate, Staunton, Journal of Applied Physics 135, 135106 (2024).
⁶Woodgate, Staunton, Physical Review B 105, 115124 (2022).
⁸Woodgate *et al.*, npj Computational Materials 10, 271 (2024)
⁹Woodgate *et al.*, Physical Review Materials 7, 053801 (2023).

Christopher D. Woodgate

Application: Refractory HEAs

Christopher D. Woodgate

Addressing Disorder

Permanent Magnets 00000 MLIPs 000000 Summary and Outlook

Refractory High-Entropy Alloys: Context

- Prototypical BCC HEAs.
- Typically V, Nb, Mo, Ta, W.

- Of interest for high-T, high-radiation applications.
- Focus on 4-component NbMoTaW.

¹Woodgate, Staunton, Physical Review Materials **7**, 013801 (2023).

²Woodgate, Staunton, Journal of Applied Physics **135**, 135106 (2024).

Christopher D. Woodgate

Addressing Disorder

Permanent Magnets

MLIPs 000000 Summary and Outlook

Refractory High-Entropy Alloys: Electronic Structure Electronic density of states around E_F within KKR-CPA.

A2 NbMoTaW

Christopher D. Woodgate

Permanent Magnets 00000 MLIPs 000000 Summary and Outlook

Refractory High-Entropy Alloys: Landau Theory

Minimum at H indicates B2-like ordering. Calculated $T_{ord} = 559$ K, $\eta_{\alpha} = (-0.42, 0.57, -0.57, 0.42)$.

¹Woodgate, Staunton, Physical Review Materials 7, 013801 (2023).
²Woodgate, Staunton, Journal of Applied Physics 135, 135106 (2024).

Christopher D. Woodgate

Addressing Disorder

Permanent Magnets

MLIPs 000000 Summary and Outlook

Refractory High-Entropy Alloys: Effective Pair Interactions

¹Woodgate, Staunton, Physical Review Materials 7, 013801 (2023).
²Woodgate, Staunton, Journal of Applied Physics 135, 135106 (2024).

Christopher D. Woodgate

Addressing Disorder

ermanent Magnets

MLIPs 000000 Summary and Outlook

Refractory High-Entropy Alloys: Monte Carlo Simulation

¹Woodgate, Staunton, Physical Review Materials 7, 013801 (2023).
²Woodgate, Staunton, Journal of Applied Physics 135, 135106 (2024).

Christopher D. Woodgate

Addressing Disorder

Permanent Magnets 20000 MLIPs 000000 Summary and Outlook

Refractory High-Entropy Alloys: Addition of V and Ti

Addition of V:

- Charge transfer/bandwidth difference between 3d and 4d/5d elements drives B32 ordering.
- Addition of Ti (to improve ductility)²
 - B32-like ordering tendencies mixed with increased propensity for phase segregation.

¹Woodgate, Staunton, Physical Review Materials 7, 013801 (2023).
²Woodgate, Staunton, Journal of Applied Physics 135, 135106 (2024).

Christopher D. Woodgate

Addressing Disorder

Permanent Magnets 00000 MLIPs 000000 Summary and Outlook

More Information? Book

¹⁰Woodgate, Springer Series in Materials Science, Vol. 346. (Springer Nature Switzerland, Cham, 2024).

Christopher D. Woodgate

Addressing Disorder

Take-Home

Story 1: Concentration Waves in High-Entropy Alloys Concentration waves provide a powerful tool for exploring HEA phase space.

Story 2: Finite Temperature Effects in Magnets

Christopher D. Woodgate

School of Physics, University of Bristol, UK

Addressing Disorder

Permanent Magnets: Why Do We Care?

- 'Hard' permanent magnet: resists being demagnetised.
- Particularly important for 'green' technologies.
- Currently heavily reliant on rare-earth elements, Nd, Sm,
- Seeking alternative materials to diversity supply chain and fill current capability 'gap'.

Permanent Magnets

MLIPs 000000 Summary and Outlook

L1₀ FeNi: A Potential 'Gap' Magnet?

- Case for L1₀ FeNi (tetrataenite)⁷:
 - Theoretical $|BH|_{max}$ of 335 kJm⁻³.
 - Good high-T performance¹. Curie temperature $T_C > 830 \text{ K}$.
- BUT currently challenging to synthesise:
 - As cast, get disordered (A1) structure.
 - Need ordered L1₀ phase for hard magnetic properties.
- Can modelling help address this challenge?

¹Woodgate, *et al.*, J. Appl. Phys. **134**, 163905 (2023). ¹¹Lewis *et al.*, J. Phys.: Condens. Matter **26** 064213 (2014).

Christopher D. Woodgate

Addressing Disorder

L10 FeNi: Temperature Dependence of Anisotropy

 Modelled the temperature dependence of magnetic properties³.

Have also worked on controlling atomic 'layering'⁴.

³Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. 134, 163905 (2023).
⁴Woodgate, Lewis, Staunton, npj Comput. Mater. 10 271 (2024).

Christopher D. Woodgate

Addressing Disorder

Take-Home

Story 2: L1₀ FeNi

Need to incorporate both magnetic and compositional disorder to compare with experiment.

Story 3: MLIPs for Alloys

Christopher D. Woodgate

Addressing Disorder

DFT is great, but 'expensive'

- \blacktriangleright DFT \rightarrow learn about materials with QM accuracy.
- Can get forces, energies, magnetic moments, etc.
- But calculations are expensive to run for large systems.
 - Usually O(N³) scaling.
 - 'Linear scaling' methods have higher base cost.
- One 'single point' calculation on a largeish supercell? ~1000 core hours.

Do we always need to do DFT?

- In most studies, we examine many 'similar' atomic configurations.
- ► Forces/energies should vary smoothly between configurations.
- Q: Can we 'learn' this unknown 'potential energy surface'?
- A: Yes, many established ways of doing do.

¹²Image credit: Livia Bartok-Partay, University of Warwick

Christopher D. Woodgate

Permanent Magnets

MLIPs 000●00 Summary and Outlook

Example: Stainless Steel, Fe₇Cr₂Ni

- End goal: study failure of material, which requires long length/time scales.
- We developed a Gaussian Approximation Potential (GAP).
- Incorporated magnetic degree of freedom on Fe atoms—'Spin GAP'.

⁵Shenoy, Woodgate, Staunton *et al.*, Phys. Rev. Mater. **8** 033804 (2024).

Christopher D. Woodgate

Addressing Disorder

ermanent Magnets

MLIPs 000000 Summary and Outlook

Model is as accurate as DFT with much-reduced cost

Can model elastic properties, vacancies, short-range order, ...

⁵Shenoy, Woodgate, Staunton *et al.*, Phys. Rev. Mater. **8** 033804 (2024).

Christopher D. Woodgate

Addressing Disorder

Take-Home

Story 3: Machine-Learning for Materials Modelling

Machine-learned interatomic potentials can help us model magnetic materials accurately at reduced cost.

Christopher D. Woodgate Addressing Disorder

Summary and Outlook

Christopher D. Woodgate

Addressing Disorder

Summary

Story 1: Concentration Waves in High-Entropy Alloys Concentration waves provide a powerful tool for exploring HEA phase space.

Story 2: L1₀ FeNi

Need to incorporate both magnetic and compositional disorder to compare with experiment.

Story 3: Machine-Learning for Materials Modelling

Machine-learned interatomic potentials can help us model magnetic materials accurately at reduced cost.

ermanent Magnets

MLIPs 000000 Summary and Outlook

Acknowledgements People

University of Bristol, UK

Christopher D. Woodgate

University of Warwick, UK

- Lakshmi Shenoy
- Albert P. Bartók
- James R. Kermode
- Julie B. Staunton

Northeastern University, USA

Laura H. Lewis

University of Oxford, UK

Christopher E. Patrick

Funding

- EPSRC (UK)
- CoSeC (UK)
- NSF (US)
- DOE (US)

Engineering and Physical Sciences Research Council

Christopher D. Woodgate Addressing Disorder