Mind the Gap: Developing $L1_0$ FeNi as a Permanent Magnet

Christopher D. Woodgate

Department of Physics, University of Warwick Christopher.Woodgate@warwick.ac.uk

7th June 2024

Permanent Magnets: Myriad Applications

THE FIRST, AND LAST, WORLD MAGNET FISHING CHAMPIONSHIP

Christopher D. Woodgate

Mind the Gap

⁰https://xkcd.com/2944

Permanent Magnets: Myriad Applications

- Permanent magnet: magnetisation in absence of applied field.
- Particularly important for 'green' technologies.
- Amount of NdFeB typically required¹ for:
 - Electric car drive motor: 1-3 kg.
 - Small, onshore wind turbine: 100-150 kg.
 - Large, offshore wind turbine: 2-4 t.

¹Energy Policy **101**, 692 (2017).

Reliance on Rare-Earth Elements: Economic and Environmental Challenges

- ▶ Neodymium price¹: \$11/kg in 2005, \$286/kg in 2011.
- China responsible for \sim 70% of global RE supply².
- Environmental concerns.

¹Energy Policy **101**, 692 (2017).

²European Commission, Joint Research Centre. doi:10.2760/303258

Conclusions

'Gap' in Performance Range of Permanent Magnets

- ► Figure of merit: 'maximum energy product', |BH|_{max}
- ▶ Two key permanent magnets for commercial applications³:
 - Nd₂Fe₁₄B: $|BH|_{max}$ up to 470 kJm⁻³
 - ▶ 'Ferrites' (e.g. $SrFe_{12}O_{19}$): $|BH|_{max}$ up to 38 kJm⁻³
- ► NdFeB typically 25× price of ferrite!

³Scripta Materialia **67** 524 (2012).

Conclusion:

$L1_0$ FeNi: A Candidate to Fill the 'Gap'?

- Case for L1₀ FeNi (tetrataenite)⁴:
 - Theoretical $|BH|_{max}$ of 335 kJm⁻³.
 - Good high-T performance. Curie temperature $T_C > 830 K$.
- BUT currently challenging to synthesise:
 - As cast, get disordered (A1) structure.
 - Need ordered L1₀ phase for hard magnetic properties.
- Can modelling help address this challenge?

⁴Lewis *et al.*, J. Phys.: Condens. Matter **26** 064213 (2014).

Christopher D. Woodgate

Mind the Gap

Modelling Approach

- Permanent magnetism is an inherently *quantum* phenomenon.
- Model at the level of ions and electrons to capture:
 - Chemical bonding.
 - Magnetic moments.
- ► Tool to do this: Density Functional Theory (DFT).
- Focus on intrinsic physical quantities: magnetocrystalline anisotropy energy, magnetisation, Curie temperature.

Capturing Structural Transition

▶ Ferromagnetic order *crucial* to formation of L1₀ phase⁵.

Alloying additions could also help⁵.

⁵Woodgate, Lewis, Staunton, arXiv:2401.02809.

Impact of Composition and Atomic Order on Hard Magnetic Properties

- Hard magnetic properties maximised when maximal atomic ordering achieved⁶.
- ▶ Thermal fluctuations are important⁶.

⁶Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. **134**, 163905 (2023).

Including Thermal Fluctuations

- Capture temperature dependence of magnetisation and anisotropy energy⁶.
- Verify robust finite-T performance.

Christopher D. Woodgate

Mind the Gap

⁶Woodgate, Patrick, Lewis, Staunton, J. Appl. Phys. **134**, 163905 (2023).

Accelerating Ordering—Applying Stress and Magnetic Field?

Recent experimental work shows applied strain and magnetic field during annealing accelerate transformation⁷.

Preliminary modelling results verify this and (further) suggest that a single L1₀ variant is selected during ordering⁸.

⁷Lewis, Stamenov, Adv. Sci. **11** 2302696 (2024).

⁸Woodgate, Lewis, Staunton, in preparation.

Take-Homes

FeNi: Candidate Rare-Earth-Free 'Gap' Magnet

Theoretical maximum energy product between that of NdFeB and oxide ferrites.

Synthesis of L1₀ Phase In Bulk Remains Challenging

Applied magnetic field and/or mechanical stress appear to accelerate atomic ordering.

Computational Modelling Provides Unique Insight

Can understand why existing materials behave how they do, and suggest routes to manufacture new ones.

Conclusions

Acknowledgements

People

University of Warwick, UK

- Christopher D. Woodgate
- Julie B. Staunton

Northeastern University, USA

- Laura H. Lewis
- University of Oxford, UK
 - Christopher E. Patrick

Funding

- C.D.W. supported by a studentship within EPSRC-funded CDT: warwick.ac.uk/hetsys
- EPSRC (UK)
- NSF (US)
- ► DOE (US)

