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Why Are We Interested?

Permanent Magnets: Applications
−Growing demand in renewable energy sector.
−Amount of NdFeB typically required [1] for:

– Electric car drive motor: 1-3 kg.
– Small, onshore wind turbine: 100-150 kg.
– Large, offshore wind turbine: 2-4 t.

Moving Away from Rare-Earth Elements
Permanent magnet marked is dominated by materials
based on rare-earth elements, e.g. Nd, Sm, Pr. These are a
highly constrained resource. It is desirable to find alterna-
tive materials.

‘Gap’ Magnets
Rare-earth supermagnets (e.g. Nd2Fe14B) are more than
an order of magnitude stronger than oxide ferrites (e.g.
SrFe12O19). Need a material to fill this ‘gap’ in intermedi-
ate capabilities at intermediate cost [2].

L10 FeNi: A Rare-Earth-Free ‘Gap’ Magnet?

Opportunities
−Near-equiatomic FeNi is known to crystallise in the tetragonal L10 structure.
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− Theoretical maximum energy product [3], |BH|max, of 335 kJm-3.
(Close to NdFeB but without use of rare-earths.)

−High Curie temperature → suitable for elevated temperature applications.

Challenges
−As-cast, get atomically disordered A1 phase → cubic symmetry, magnetically soft.
− Low atomic ordering temperature results in sluggish kinetics → near-impossible to synthe-

sise in bulk using conventional processing techniques.

Insights from DFT-based Modelling

A1 → L10 Atomic Ordering
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− L10 ordering only predicted when material simulated in ferromagnetic state [5].
=⇒ processing must take place below Curie temperature.

Magnetic Properties at Finite Temperature
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−Can use the ‘disordered local moment’ picture to describe the temperature dependence
of uniaxial magnetocrystalline anisotropy coefficient, K1, as well as the magnetisation of
the material as a function of temperature [4].

−Verify robust finite temperature performance across a range of stoichiometries.

L10 FeNi: Bandstructure

Conclusions

−DFT-based modelling captures key physics of FeNi in-
cluding chemical ordering and magnetic properties.

−Need to explore less conventional processing tech-
niques: application of magnetic field, stress?
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