CY900 - Second-order homogeneous differential equations with

variable coefficients

T. R. Walsh

1. Power Series - a few reminders
Not wanting to get too far into the gory details of this subject, just a few things to remind
you about a general power series

1.

2.

© » N

A power series in (z — a) can be expressed as Y o ¢, (z — a)”

Every power series has an interval of convergence - this is the set of numbers for which
the series converges

. every interval of convergence has a radius of convergence, R.
. A power series converges absolutely when | z —a |< R and diverges when |z —a |[> R

Cif Y00 s en(z —a)™ = 0 for all x in the interval of convergence, then ¢, = 0 for all values

of n

A power series represents a continuous function within its interval of convergence
A power series can be differentiated term by term within its interval of convergence
A power series can be integrated term by term within its interval of convergence

Two power series with a common interval of convergence can be added term by term

2. Power series solution of odes

Consider the ode y' — 2zy = 0 - we seek solutions by assuming the general solution exists
as a power series (about z =0), y = > -~ c,2™. Is it possible to obtain coefficients ¢, such
that the ode is satisfied?

Take the first derivative of this power series, e.g.

o0
v =3 ! )
n=0

also determine the expression for 2zy, e.g.

o
20y = Z PI (2)
n=0



substitute these expressions into the ode:

o o
chnac"’l — Z 2¢,2" =0 (3)
n=0 n=0

To make things clearer, you should relabel the summation indices so that your powers of z
are in sync - let ¥ = n — 1 in the first sum and £ = n + 1 in the second sum, while also
taking out the term without any z-dependence, i.e.

0 = ¢+ Z(k + 1) g2 — Z 2cp_12" (4)
k=1 k=1

= o+ EO_O: ([(k )i — 20k_1] xk) (5)

This equation implies ¢; = 0 and (k + 1)cgy1 — 2¢, 1 =0, for £ € N.
The second of these resulting equations is a recurrence relation, rearranged as shown

below:
_ 2¢5 1

Cpi1 = 6
T R+ 1) (6)
You can use this relation to find successive values of the coefficients. In this case,
start by plugging in k =1,

Cy = 7 = C (7)
Now try k£ = 2,
2c
3 = ?1 =0 (8)
and so on....If you keep going, you end up with the solution
4 o  _2n
Cox x
yzco+0x+cox2+0x3+02—!+...ZCOZF 9)

n=0

You should recognise that this solution in fact corresponds to y = e“”z, as you could determine
without using a power series (even by inspection!). It is multiplied by a constant ¢q - so this
is general solution to this ode.

3. Solutions of 2nd order odes around ordinary points
Consider the situation for a 2nd order homogeneous ode with variable coefficients,

az(2)y" + a1 (2)y’ + ao(z)y = 0 (10)
that is put into standard form:
y'+ P(a)y + Qz)y =0 (11)

A point z = zy is an ordinary point if P(z) and Q(x) are both analytic at x¢, ie they both
have a power series within x — xy with a positive radius of convergence. If your point fails
this test, then it’s a singular point (more about later...)

2



To solve a 2nd-order ode at an ordinary point, just follow the same kind of procedure
as outlined above - seek two solutions of the form y = Y~  c,(x — )", where the series
solution will converge for at least mod x —zy mod < R;, where R; is the closest singular
point. In the example below, we assume an ordinary point at z¢y = 0.

Example: Find the power series solution to the ode 3" — 2xy = 0 around z = 0.

First determine the second derivative, by first writing down the first derivative:

oo o
y = E ne,z" = E ne, "
n=0 n=1

and take the derivative again:

(o] o0
Zn n—1)c,a" 2 = Zn(n —1)epz™? (12)
n=1 n=2

where the first term in each case is zero, therefore leaving ¢y and ¢; undetermined. Now put
together the 2nd term of the ode, i.e.

o0
2ry = Z 2c,z" ! (13)
n=0

and put equations (12) and (13) together to get a power series expression for y” — 2zy = 0:

o0 o0
Yy — 22y = Z (n —1)cpa™ Zanx"+1
n=2
= 2.1.cp.2° —I—Z (n—1)cyz™ Z?cn

n=3

= 0

Now re-label your summation indices - let £ = n — 2 in the first sum and £ = n + 1 in the
second sum, yielding

0 = 2c+ f:(k +2)(k + 1)cppox” — i 2c,_1x* (14)
- (202 + f: [(k +2)(k+ Depgs — 2C,H] xk) (15)

Equating powers of k to zero implies that 2co = 0 and
(k+2)(k+1)ckra —2c,-1=0 (16)

with this last equation yielding a recurrence relation:

c . 2c 1
Tk +2)(k+1)
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By applying this recurrence relation, bearing in mind that c; = 0, the solution for the ode
can be written down:

2 2 2 2
— 04+ —cozd + —cizt 4+ 0 6 T
y o= Gtart it gocr o par £ 04 el T o1t T
= ¢ [1 + ixg’ + z® + }
3.2 6.5.3.2 T
+ ¢ [:v + lx‘l + z’ + ]
! 4.3 7.6.4.3 o

As expected, this yields two independent solutions:

) = [1 . ; 2 [1.4'7(.3'/% )('?)k: - 2)]:53;6} (18)
and 00
2K[25.8...(3k — 1)] 4014
(@) = ¢ [x " [ o +(1)! )]x } (19)

k=1

4. Solutions of 2nd order odes around singular points
The case of regular singular points only will be considered here. A regular singular point is
defined as follows — take a general 2nd order homogeneous ode:

az(2)y" + a1(z)y’ + ao(z)y =0 (20)
that is put into standard form:
y'+ P(2)y' + Q(z)y =0 (21)

A point x = 1z is a regular singular point if both (z —z¢) P(z) and (z —0)*Q(z) are analytic
at xy. If this is not the case, then the singular point is an irregular singular point. To solve
an ode such as equation (20) about a regular singular point, the method of Froebenius can
be used. In this case, you try to expand your solution to this ode in a series that involves a
parameter, s, such that your general expression for y is:

o0 o
y =z’ Z cpa™ = Z Cnz" " (22)
n=0 n=0

Example: Find the power series solution to the ode 3zy” + 3’ — y = 0 around the regular
singular point z = 0.
To start, try a solution of the form

o0 o
y=1° Z cnz™ = Z cpz™t? (23)
n=0 n=0



and take derivatives of this expression, e.g.

y/ — Z(n + S)Cn$n+s_1 (24)
n=0
Y = Z(n +5—1)(n+ s)c,z" 2 (25)
n=0

now substitute these expressions your ode, to give

o o o0
0 = Z 3(n+s—1)(n+s)c,z" ! + Z(n + 8)epx™ T — Z Cax" e

o0

= [3(n +s—1)(n+s)+(n+ s)} cpr T — i Cpz" e

n=0 n=0

o0
= z (Z n+5)(3n + 35 — 2)cpz™ ! — cnx")
n=0

= :1:(5 3s —2)cor +Zn+s(3n+3s—2cnaj Zc,@)

n=1
=z ( (3s — 2)cox™ +Z (k+s+1)(3k +3s + 1)cpr1z” — chx )
k=0
Equating like powers of x to zero, we find two equations:
$(3s —2)cp =0 and, (26)
(k+s+1)3k+3s+1)cgr1 —c, =0 (27)

The first of these, equation (26) is known as an indicial equation, and it yields in this case
two values for s. We must suppose that ¢y # 0 in this case, yielding two values of s: s =0
and s = 2.
For each value of s obtained, you will get a different recurrence relation when
substituted into equation (27).

For s = 0 the recurrence relation is

Ck
= 28
R CESICIES Y 28)
and for s = 2/3 the recurrence relation is
S (29)

W= Bk +5)(k + 1)

Each of these recurrence relations yields a solution to the ode — if you persist you should get
the solutions
xn

yi(r) = Cox's [1 + Z and, (30)
£ nl5.8.11.

.. (3n+2)



xn

ho(r) = 12’ [1 * ; A147.. (30— 2) (31)

Added together, these two solutions yield the general solution for this ode.

Exercises: Find power series solutions for the following odes.

1. 4" +zy +y=0
2. y"+y=0, given y(0) =0 and y'(0) =1
3. 2%y" + 4zy’ + (2? + 2)y = 0, about x = 0, given this is a regular singular point.



