CY900 - Partial differential equations

T. R. Walsh

1. Introduction to pdes
In this section, only linear equations in 2 variables will be considered, e.g.
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where A through to G are functions of z and y, as is v = u(z,y). If G(z,y) = 0 then the
pde is homogeneous, if not, then the pde is inhomogeneous.

The key idea to recall here is that integration of a partial derivative does not lead to
a constant, but rather to an arbitrary function, e.g. if @ = 0, then

u_/_w_ (1)

For example, the pde g%‘ = 0 can be solved by integrating twice. Integrating the first time
yields
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and integrating again yields
u(z,y) = yf(z) + g(z) (3)

Example: Solve the following pde using an integrating factor approach:
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First substitute v = g—;, s.t. equation (4) now becomes
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Using the integrating factor
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ev = €*+g(y) so that (6)
v = 1+ g(y)e”® and therefore (7)
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Integrating equation(8) yields the solution to the pde,
u(@,y) =y + f(y)e™ + h(z)
where

2. Separation of variables
It is sometimes possible to find particular solutions of a pde in the form of a product

u(z,y) = X ()Y (y) 9)

leading to the following shorthand notation:

8_u =X'Y |, 8_u = XY’
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To see the method of separation of variables in action, take the example of the pde
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now seek solutions of this pde using a product solution
u(z,y) = X(2)Y(y) (11)
In shorthand notation equation (10) can be written as
X"Y = 4XY’ (12)
where the above equation can be rearranged to give
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Since the l.h.s is independent of y and the r.h.s is independent of x, it is safe to conclude
that both sides are equal to a constant. It is convenient to write this constant as A\? or —\2.
This constant is sometimes referred to as the separation constant. There are three cases
of the separation constant to explore:

Case I: \2 >0

In this case, we now have two odes to solve; one in x and one in y:

X" —4X) =0 and V' —YX =0 (14)



This will yield solutions (that you should be easily able to obtain by now)

X = cicosh(2Ax) + cosinh(2A\x) (15)
Y = c3e? (16)

Yielding a product solution
w(z,y) = AreMYeosh(2Az) + BieXYsinh(2)x) (17)

where A; = c¢;c3 and B; = cycs.
Case II: —)\2 <0

The two odes to solve are now:

X" 4+4XX =0 and Y'+Y N =0 (18)

yielding solutions
X = cyc08(2Mx) + cssin(2Ax) (19)
Y = cge Y (20)

Yielding a product solution
u(z,y) = Aye X Ycos(2\x) + Boe N Vsin(2Az) (21)
where Ay = c4c6 and By = c5c6.

Case III: \2 =0

The two odes to solve are now:

X"=0 and Y'=0 (22)
yielding solutions
X =crx + g (23)
Y = Co (24)
Yielding a product solution
u(z,y) = Asx + Bs (25)

where Ay = c7c9 and By = cgeg.

3. Superposition principle

In the following, the assumption is made that whenever there is an infinite set of
solutions to a pde, ui, us, u3..., then we can construct another solution u, by forming the
infinite series
o
U(J?, y) = Z = Uk(ﬂf, y)

k=1
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4. Boundary value problems

Boundary value problems are pdes that are to be solved by applying boundary condi-
tions and initial conditions. Examples are the heat equation, the wave equation and Laplace’s
equation. When solving boundary value problems, you will find that your choice of the sep-
aration constant becomes important — the wrong choice of separation constant will lead to
either unphysical results or to not being able to find a solution according to your boundary
conditions and initial conditions.
Example: Here the heat equation is solved for the following conditions. Consider a rod of
length L, with an initial temperature= f(z) throughout the rod, with the ends of the rod
at a fixed temperature of 0 degrees for all time. The temperature of the rod is given as a
function of time, ¢, and distance along the rod, z, ie temperature= u(x,t). Of course there
are many assumptions being made about this system, such that heat is only moving in the
z-direction and so on. The pde for this situation is given by

2
%:g—z k>0, 0<z<L, t>0 (26)

where £ is proportional to the thermal conductivity of the rod and the boundary conditions
and initial conditions are:

u(0,t) =0, u(L,t)=0, t>0 (27)

and,
u(z,0) = f(z), 0<z<L (28)

Try a product solution of the form
u(z,t) = X(x)T(t) (29)

with a separation constant of —A2. This choice of separation constant will lead to a sinusoidal
function in z (the equilibrium solution when time — oo) and a decaying exponential function
in ¢ (the transient solution in time). Therefore this choice of separation constant makes
physical sense. In shorthand notation, the heat equation can be re-expressed as
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This yields two odes to solve:
X"+ XX =0 and T'+ kTN =0 (31)
yielding solutions
X = cicos(Ax) + cosin(Ax) (32)
T = cae " (33)

Before taking the product to form the solution u(x,t), consider first some of the boundary
conditions. The condition u(0,t) = 0, implies that ¢; = 0. Therefore,

X = easin(Ax) (34)
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The condition u(L,t) = 0 gives rise to a non-trivial solution provided that

such that i

Using the superposition principle gives the solution

u(z,t) = iun = iAne( L )sm(?) (37)

Expressions for the A, can be obtained by applying the initial conditions u(z,0) =
f(z). Therefore

u(z,0) = ZAnsm(?) (38)

Recalling the Fourier sine series, we can get an expression for A,:

2 L . NI
Au=2 /0 F(a)sin("T% ) (39)

giving us a final expression for the solution to the heat equation as:
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u(z,t) ;L/o f(x)sm(L)xe sm(L) (40)
Exercises:
1. Using the method of undetermined coefficients, solve % —yPu=e¢€"
2. Solve Laplace’s equation
0? 0?
8—;;+8—;;:0 0<zr<a 0O0<y<b (41)

to find the steady-state temperature u(zx,y) of a 2D plate, subject to the following boundary
conditions and initial conditions:

ou ou

=0, =0, 0<y<b

a$ z=0 al' r=a

and
u(z,0) =0, u(z,b)=f(z), 0<z<a

Be sure to obtain expressions for any coeffcients you might use in superposition.



