Skip to main content Skip to navigation

Latest Publications

Select tags to filter on

A Streptomyces venezuelae Cell-Free Toolkit for Synthetic Biology

ACS Synthetic BiologySimon J Moore, Hung-En Lai, Soo-Mei Chee, Ming Toh, Seth Coode, Kameshwari Chengan, Patrick Capel, Christophe Corre, Emmanuel LC de los Santos and Paul S Freemont

Prokaryotic cell-free coupled transcription–translation (TX-TL) systems are emerging as a powerful tool to examine natural product biosynthetic pathways in a test tube. To study enzymes and pathways from Streptomyces, we originally developed a homologous Streptomyces cell-free system to provide a native protein folding environment, a high G+C (%) tRNA pool, and an active background metabolism. However, our initial yields were low (36 μg/mL) and showed a high level of batch-to-batch variation. Here, we present an updated high-yield and robust Streptomyces TX-TL protocol, reaching up to yields of 266 μg/mL of expressed recombinant protein. To complement this, we rapidly characterize a range of DNA parts with different reporters, express high G+C (%) biosynthetic genes, and demonstrate an initial proof of concept for combined transcription, translation, and biosynthesis of Streptomyces metabolic pathways in a single “one-pot” reaction.

ACS Synthetic Biology. January 2021

Fri 12 Feb 2021, 08:39 | Tags: Biotechnology

Engineering bacteria to produce pure phage-like particles for gene delivery

ACS Synthetic Biology dec20Tridgett Matthew, Abab, Maria, Osgerby Alexander, Ramirez Garcia Robert and Jaramillo Alfonso

Natural and engineered phages have been used in many applications, but their use to deliver user-defined genetic cargoes has been hampered by contamination with replicative phage, restricting use of the technology beyond the laboratory. Here we present a method to produce transducing particles without contamination. In addition, we demonstrate the use of a helper phage-free transducing particle preparation as an antimicrobial agent. This will pave the way for the development of new phage-based technologies with greater scope than lytic phage therapy.

ACS Synthetic Biology

Wed 20 Jan 2021, 07:55 | Tags: Biotechnology

Orkun Soyer publications

Life Science Alliance nov20 smInhibiting the reproduction SARS-CoV-2 through perturbations in human cell metabolic network

Hadrien Delattre, Kalesh Sasidharan, Orkun S Soyer

Here, we made use of genomic and structural information to create a biomass function capturing the amino and nucleic acid requirements of SARS-CoV-2. Incorporating this biomass function into a stoichiometric metabolic model of the human lung cell and applying metabolic flux balance analysis, we identified host-based metabolic perturbations inhibiting SARS-CoV-2 reproduction. Our results highlight reactions in the central metabolism, as well as amino acid and nucleotide biosynthesis pathways. By incorporating host cellular maintenance into the model based on available protein expression data from human lung cells, we find that only few of these metabolic perturbations are able to selectively inhibit virus reproduction.

Life Science Alliance. November 2020

Press Release

Frontiers in Cellular & Infection Microbiology oct20Campylobacter jejuni 11168H Exposed to Penicillin Forms Persister Cells and Cells With Altered Redox Protein Activity

Helen Morcrette, Andrea Kovacs-Simon, Richard K Tennant, John Love, Sariqa Wagley, Zheng R Yang, David J Studholme, Orkun S Soyer, Olivia L Champion, Clive S Butler and Richard W Titball

The formation of persister cells is one mechanism by which bacteria can survive exposure to environmental stresses. We show that Campylobacter jejuni 11168H forms persister cells at a frequency of 10−3 after exposure to 100 × MIC of penicillin G for 24 h. Staining the cell population with a redox sensitive fluorescent dye revealed that penicillin G treatment resulted in the appearance of a population of cells with increased fluorescence. We present evidence, to show this could be a consequence of increased redox protein activity in, or associated with, the electron transport chain. These data suggest that a population of penicillin G treated C. jejuni cells could undergo a remodeling of the electron transport chain in order to moderate membrane hyperpolarization and intracellular alkalization; thus reducing the antibiotic efficacy and potentially assisting in persister cell formation.

Frontiers in Cellular and Infection Microbiology. October 2020

Fri 27 Nov 2020, 08:52 | Tags: Biotechnology