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• An anonymous philosopher once said 

– “Life is nothing but a dream”

• Nobel prize winner Albert Szent-Györgyi said  

– "Life is nothing but an electron looking for a place 

to rest".

• Nobel prize winner François Jacob said

– “the dream of every cell is to become two cells.”

I will talk about one problem related to electric 

charge when a cell strives to achieve its dream.



What does it take for one cell to become 

two cells?

Biomass of a bacterial cell: ~50% Carbon, ~15% Nitrogen . .
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Carbon uptake and metabolism have been extensively characterized.
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Nitrogen uptake is peculiar. 

Biomass of a bacterial cell: ~50% Carbon, ~15% Nitrogen . .



Nitrogen metabolism and regulation

NH4
+/NH3
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Biomass of a bacterial cell: ~50% Carbon, ~15% Nitrogen . .
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AmtB transports NH4
+

NH3 NH4
+

BiomassNH3 NH4
+

AmtB

NH3 is very permeable to membrane (~30 times more than H2O)

AmtB transports  and concentrates NH4
+ internally
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AmtB may be harmful

NH3 is very permeable to membrane.
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Acidification 

or 

ATP drainage
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AmtB may be harmful

NH3 is very permeable to membrane.
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How much NH4
+ should AmtB transport?

How does E. coli regulate it?



Microfluidic chemostat



Microfluidic chamber
E. coli NCM3722, in Rich Defined Medium +0.5% glycerol

Channel (Flow of fresh medium)

1 m

1000 m

100 m

Capillary
0.6m

Nutrient exchange rate: ~40s

Time

[NH4
+ /NH3]

Channel (Flow of fresh medium)
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E. coli K-12 NCM3722 in Neidhardt’s 

MOPS medium with 0.4% of glyc with 

various ammonium concentrations.
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AmtB promoter-GFP

E. coli K-12 NCM3722 in Neidhardt’s 

MOPS medium with 0.4% of glyc with 

various ammonium concentrations.

: WT

:  amtB

AmtB promoter activities deviate for the two strains.

AmtB promoter

Internal NH4
+ (via Gln)

: WT

:  amtB



Quantitative analysis
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N assimilation into biomass = NH3 diffusion + NH4
+  transport

N0 = # of Nitrogen per cell

 = Growth rate



Quantitative analysis

+ ext + int

0 Δ 4 Δ 4 Δ ([NH ] -[NH ] )     (1)N C P   

amtB

+ ext + int
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WT
Walter and Gutknecht(1986)

P=0.13cm/sec
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Sensitive

AmtB is regulated very sensitively so that internal ammonium is maintained 

precisely at the minimal level needed for the optimal growth.

NH4
+ flux through AmtB
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Putting together known interactions

aKG : alpha-ketoglutarate. 

M. Merrick(2010)



aKG: a nitrogen carrier

biomass N assimilation[aKG]
d

J J
dt

 
biomass N assimilation[aKG]   J J dt 

c



aKG: a nitrogen carrier

biomass N assimilation[aKG]
d

J J
dt

 
biomass N assimilation[aKG]   J J dt 
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Leaky diffusion  [NH4
+]int 

N*
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+

NH3 leaky diffusion



[aKG]  AmtB
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+

NH3 leaky diffusion
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Integral feedback control

• Integral feedback control : Common engineering scheme that 

allows a system to track a desired set-point robustly. 

– e.g. thermostat in the room, cruse control in a car. 

• AmtB is regulated very sensitively so that internal ammonium 

is maintained precisely at the minimal level needed for the 

optimal growth.

Kim, M. et al. (2012) Mol. Syst. Biol. 8:616



Tribute to Sydney Kustu


