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Three famous quotes

« An anonymous philosopher once said

— “Life is nothing but a dream™

* Nobel prize winner Albert Szent-Gyorgyi said

— "Life 1s nothing but an electron looking for a place
to rest".

* Nobel prize winner Francois Jacob said
— “the dream of every cell is to become two cells.”

| will talk about one problem related to electric

charge when a cell strives to achieve its dream.



What does It take for one cell to become
two cells?

Biomass of a bacterial cell: ~50% Carbon, ~15% Nitrogen . .
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Carbon and nitrogen uptake Is important

Biomass of a bacterial cell: ~50% Carbon, ~15% Nitrogen . .
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\/ > ocig ™= protein ﬂBlomass

Carbon uptake and metabolism have been extensively characterized.
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However, much less is known about nitrogen uptake

Biomass of a bacterial cell: ~50% Carbon, ~15% Nitrogen . .
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Nitrogen uptake is peculiar.



Nitrogen metabolism and regulation

Biomass of a bacterial cell: ~50% Carbon, ~15% Nitrogen . .
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NH,*/NH;  NH,;* < H* +NH;,  [NH,"/[NH,]~180 at pH 7
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AmtB transports NH,*

NH; is very permeable to membrane (~30 times more than H,0)
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AmtB may be harmful

NH; is very permeable to membrane.
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AmtB may be harmful

NH; is very permeable to membrane.

\/’

How much NH,*should AmtB transport?
How does E. coli regulate it?
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Microfluidic chemostat

Inlet




Microfluidic chamber

E. coli NCM3722, in Rich Defined Medium +0.5% glycerol
[NH,*/NH,]

Time
Nutrient exchange rate: ~40s
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Growth rate with and without AmtB

E. coli K-12 NCM3722 in Neidhardt’s
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AmtB promoter-GFP
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E. coli K-12 NCM3722 in Neidhardt’s
MOPS medium with 0.4% of glyc with
various ammonium concentrations.



AmtB promoter-GFP

E. coli K-12 NCM3722 in Neidhardt’s

AmtB promoter activities deviate for the two strains.
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AmtB promoter-GFP
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Quantitative analysis
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Quantitative analysis

AamtB .

_____________

______________

N assimilation into biomass = NH4 diffusion

|

N |
P- ([I\”_Is]ext _[NHs]mt)

P: membrane permeability

N, = # of Nitrogen per cell

L = Growth rate No -4

N4, =C-P-(INHIIZ-INHITY) - (D)

C: conversion factor

WT

N assimilation into biomass = NH; diffusion + NH,* transport

N,-A, =C-P-([NH;IZ-[NH; ™) +J, .« - (2)

wt



Quantitative analysis

AamtB
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Walter and Gutknecht(1986)
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AmtB is regulated very sensitively so that internal ammonium is maintained
precisely at the minimal level needed for the optimal growth.
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[NH, 1" and Jame
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Putting together known interactions

aKG-—> AmtB

aKG : alpha-ketoglutarate.

M
OH

0



aKG: a nitrogen carrier

NH,*/NH,

N assimilation

aKG-N aKG
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biomass ¥ N assimilation



aKG: a nitrogen carrier

NH,*/NH,

N assimilation

aKG-N aKG-> AmtB

\< Jbiomass

Biomass

d
E[aKG] = ‘Jbiomass -J N assimilation — [aKG] = J‘ J J dt

biomass ¥ N assimilation
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Leaky diffusionT = [NH,*]"t{
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[aKG] T= AmtBT

AmtB

[aKG] ZIJ biomass - JN assimilation dt

NH, leaky diffusion
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Negative integral feedback
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Negative integral feedback
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Negative integral feedback
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Negative integral feedback
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Integral feedback control

 Integral feedback control : Common engineering scheme that
allows a system to track a desired set-point robustly.
— e.g. thermostat in the room, cruse control in a car.

« AmtB is regulated very sensitively so that internal ammonium
IS maintained precisely at the minimal level needed for the

optimal growth.

Kim, M. et al. (2012) Mol. Syst. Biol. 8:616



Tribute to Sydney Kustu




