Widening functional boundaries of the σ^54 promoter Pu of $Pseudomonas putida$ by defeating extant physiological constraints
Widening functional boundaries of the σ^{54} promoter Pu of *Pseudomonas putida* by defeating extant physiological constraints†

Aitor de las Heras,‡ Esteban Martinez-Garcia,‡ Maria Rosa Domingo-Sananes and Victor de Lorenzo*†

The extant layout of the σ^{54} promoter Pu, harboured by the catabolic TOL plasmid, pWW0, of *Pseudomonas putida* is one of the most complex instances of endogenous and exogenous signal integration known in the prokaryotic domain. In this regulatory system, all signal inputs are eventually translated into occupation of the promoter sequence by either of two necessary components: the m-xylene responsive transcriptional factor XylR and the σ^{54} containing form of RNA polymerase. Modelling of these components indicated that the Pu promoter could be upgraded to respond with much greater capacity to aromatic inducers by artificially increasing the endogenous levels of both XylR and the σ^{54} sigma factor, either separately or together. To explore these scenarios, expression of rpoN, the gene encoding σ^{54}, was placed under the control of an orthogonal regulatory system that was inducible by salicylic acid. We generated a knock-in *P. putida* strain containing this construct alongside the xylR/Pu regulatory module in its native configuration, and furthermore, a second strain where xylR expression was under the control of an engineered positive-feedback loop. These interventions allowed us to dramatically increase the transcriptional capacity (i.e. absolute promoter output) of Pu far beyond its natural scope. In addition, they resulted in a new regulatory device displaying more sensitive and ultra-fast responses to m-xylene. To our knowledge, this is the first time that the working regime of a promoter has been rationally modified by releasing the constraints imposed by its innate constituents.

Introduction

The functional space of every prokaryotic promoter is defined by a number of parameters that frame its performance *in vivo*. Promoters are rarely constitutively active and are typically integral components of regulatory devices that respond to and integrate external physiological and environmental signals to dictate transcription initiation. Such signals can be both endogenous and exogenous and either physicochemical or nutritional. In order to sense such cues and provide suitable responses, promoters perform distinct signal-processing tasks that are implemented through the interaction of a suite of transcription factors (TFs) with the RNA polymerase and target DNA sequences. Yet, the actual activity boundaries of each promoter are defined by the biological function that the respective regulatory node has evolved to deliver. This is implemented through the interplay between signal-specific and global control machinery inside the specific regulatory system, the connectivity of which determines the fine-tuning of the transcriptional outcome. However, the functional parameters exhibited by extant individual promoters that have evolved to achieve an optimal performance in its host bacterium do not preclude the ability of the promoter to physiologically operate beyond such natural constraints.

To explore whether working boundaries of regulatory nodes can be expanded by removal of extant physiological constraints we have focused on the *Pu* promoter of the soil bacterium *Pseudomonas putida*. This promoter is one of the most sophisticated examples of processing internal and external cues in a single regulatory element and is contained within the TOL plasmid pWW0. For this bacterium, *Pu* and the various factors it interacts with (Fig. 1) form the primary sensor/actuator device of a complex metabolic and regulatory network that determines a pathway for biodegradation of m-xylene. The route encompasses two catabolic operons, which are subject
to a complex regulatory circuit that involves the interplay between plasmid-encoded and chromosome-encoded regulatory proteins.11–14 The key event that triggers activation of the pathway is the interaction of the substrate (\textit{m}-xylene) with the master TF of the system, called XylR. This TF is a member of the prokaryotic enhancer-binding protein family of regulators15–17 that act in concert with the RNA polymerase (RNAP) containing the alternative \(\sigma^{54}\) sigma factor13,17. Both \(\sigma^{54}\)-RNAP and XylR then sit at distant places of the DNA sequence \textit{Pu} promoter to form a tridimensional transcription initiation complex with the assistance of the DNA-bending factor IHF (integration host factor factor18,19). Purified \(\sigma^{54}\)-RNAP, IHF and activated XylR have the ability to activate the \textit{Pu} promoter \textit{in vitro}.20 \textit{In vivo}, however, the binding of XylR to its respective sites in the promoter is regulated by the action of a number of factors (Fig. 1). This hinders XylR attachment to DNA in a manner dependent upon cellular XylR levels are subject themselves to fine transcriptional and post-transcriptional regulation (Fig. 1) that indirectly controls the number of molecules of the TF that are available for sensing \textit{m}-xylene and binding \textit{Pu}. One of the key features of XylR expression is that \textit{m}-xylene activated XylR represses its own transcription from its \textit{Pe} promoter.21–25 In contrast, \textit{in vivo} binding of RNAP-\(\sigma^{54}\) to \textit{Pu} is additionally regulated through various factors. Beyond providing architectural assistance to interact with distantly-bound XylR, IHF also helps \(\sigma^{54}\)-RNAP to bind to its target –12\/~24 sequence in \textit{Pu}.26–28 As a consequence, a better DNA binding site overcomes the need for IHF.29 Finally, the share of \(\sigma^{54}\)-RNAP in the pool of available polymerase is controlled by sigma factor competition, a process controlled itself by ppGpp and the RNAP-associated factor DksA.30–32 All these \textit{in vivo} elements that operate on \textit{Pu} confine its activity profile to a limited number of native functional states33 that deliver the restricted transcriptional capacity, effector sensitivity/specificity and time of response that we observe in \textit{P. putida}.

Given that optimal promoter performance can be obtained through occupation of \textit{Pu} by \textit{m}-xylene-activated XylR and \(\sigma^{54}\)-RNAP, we wondered whether artificially favouring such occupancy \textit{in vivo} could reveal the maximum functional promoter capability when removed of native regulatory constraints. Indeed, enhancing the levels of both XylR and RNAP-\(\sigma^{54}\) can theoretically out-compete their binding antagonists to \textit{Pu} by mere kinetic displacement of the corresponding DNA sites (Fig. 1). In this work we have investigated whether we could upgrade the transcriptional performance of \textit{Pu} \textit{in vivo} beyond native regulatory constraints by manipulating the intracellular concentrations of XylR and \(\sigma^{54}\). To this end, we first explored using a simple mathematical model whether the innate output of the XylR/\textit{Pu} device could be modified by increasing alternatively \(\sigma^{54}\), XylR or both. We further explored this promoter system using a suite of genetic constructs engineered within transposon vectors encoding XylR and \textit{rpoN} (the \(\sigma^{54}\) gene) under the control of different expression circuits. As shown below, this approach allowed us not only to increase the net output of the XylR/\textit{Pu} regulatory node in \textit{P. putida} but also endow the system with an ultra-fast and super-sensitive response to the aromatic inducer. We thus argue that the native regulatory constraints governing the functional capability of given promoters \textit{in vivo} can be manipulated not only through improving the DNA sequences bound by TFs, but also by rationally changing their genetic wiring.

Results and discussion

Signal-specific and overall functional boundaries of the XylR/\textit{Pu} regulatory node

The principal factors of the regulation of the XylR/\textit{Pu} device, which controls expression of the TOL pathway genes contained in the pWW0 plasmid of \textit{P. putida}, are shown in Fig. 1. The default minimum promoter only requires XylR and \(\sigma^{54}\)-RNAP binding to DNA. This primes \textit{Pu} to respond to \textit{m}-xylene, however a large number of overall physiological signals also influence the system by [i] controlling intracellular XylR levels, [ii] impeding binding of XylR to its target sequences to \textit{Pu}, [iii] easing the docking of \(\sigma^{54}\)-RNAP through interactions of the N-domain of its \(\sigma\) subunit with a UP element and [iv] restricting the share of \(\sigma^{54}\)-containing species in the whole RNAP pool available for \textit{Pu} binding. Signal integration is thus eventually translated into the variable association of the two key players of transcriptional initiation: \(\sigma^{54}\)-RNAP and XylR. This is made possible by their low abundance \textit{in vivo}: \(~80\) \(\sigma^{54}\) molecules34 and 30–140 XylR monomers35 per cell. This native scenario limits the system within given functional parameters. But at the same time, changes in the levels of either \(\sigma^{54}\)-RNAP or XylR can
make a considerable difference in the observed behaviour of the system. This raises the question of whether one can alter promoter performance by manipulating the cues that are channeled through available σ^{54}-RNAP, which itself depends on σ^{54} binding to the core enzyme, or through XylR. In the work below we consider the two scenarios, first separately and then together.

Increasing σ^{54} levels enhances transcriptional output of the XylR/Pu node

An earlier indication of the effect of artificially high levels of σ^{54} on Pu was hinted at by Cases et al.,36 who showed that rising the *in vivo* concentration of the factor by means of an IPTG-inducible expression system relieved the exponential silencing of the promoter that is typically observed during fast growth in rich medium (*exponential silencing* was the term used at the time to signify the whole of physiological control12). In order to rigorously formalize the regulatory scenario under study, we first simulated the performance of promoters Pu and Pr following induction of the system with m-xylene (Fig. 2A). Pu activity is represented as emission of luminescence of a Pu-luxCDABE fusion, while the output of Pr was equal to production of XylR protein. Under the naturally occurring regulatory setting of Fig. 2A (i.e. the levels of σ^{54} are kept low and constant), addition of the aromatic inducer has two opposite consequences: Pu activity increases, but XylR levels decrease because of the negative feedback loop of the TF in its own transcription. In a second simulation (Fig. 2B), we examined the effect of increasing artificially intracellular σ^{54} concentration (for instance, through an expression system dependent on an external inducer). The model predicts in this case that Pu output again rises, but the dynamics of XylR production remains impervious to the same perturbation i.e., there is no variation in Pr output and thus XylR levels behave as before.

In order to prove these predictions and test the model with experimentally measured parameters we engineered a mini-Tn5 transposon determining transcription of the *rpoN* gene (encoding σ^{54}) under the control of an expression system responding to salicylate37 (Table 1). Both salicylate and the respective responding TF (the regulator called NahR) are entirely orthogonal to *P. putida* KT2440, thereby ensuring the specificity of the response once cells are exposed to the inducer. The transposon Tn5 [Psal-RpoN] (module 4 in Fig. 3D) was then delivered to the chromosome of *P. putida* WT, a Pu-luxCDABE reporter strain in which the xylR gene is expressed under its naturally occurring Pr promoter (Table 1 and Fig. 3E) and resulted in strain *P. putida* Psal-RpoN-X-WT. To verify that knocking-in the Tn5 [Psal-RpoN] module raised intracellular σ^{54} concentrations in this strain, we grew cells in the presence of salicylate using as a control the isogenic strain *P. putida* X-WT devoid of the heterologous expression system. The concentration of salicylate used (2 mM) was optimal for full induction of the *Psal* promoter.38 Samples were then exposed or not to saturating vapours of m-xylene for establishing whether this TOL pathway substrate could have any influence on σ^{54} concentrations as well. After an induction period of 6 h, protein extracts of each culture were examined for levels of the sigma factor in a Western blot assay with a recombinant anti-σ^{54} antibody.34 The results of Fig. 4A show that the salicylate-induced cells bearing the Psal-rpoN module increased σ^{54} contents by >4-fold with respect to those of the isogenic strain without the transposon. In contrast, the levels of the factor were

![Fig. 2](image-url) Modeling the XylR/Pu regulatory node with alternative configurations of σ^{54} expression. (A) Relational map of the components of the node in the native regulatory scenario. In the presence of m-xylene XylR and the σ^{54}-RNA polymerase trigger a Pu-lux reporter system, while xylR expression is simultaneously lowered because of the action of XyR on promoter Pr. A dynamic simulation of this case is shown to the right, arrows signaling the moment of induction by m-xylene. (B) Relational map in a regulatory scenario where σ^{54} is augmented through a separate external inducer. The corresponding simulation is shown as before.
Table 1 Strains and plasmids

<table>
<thead>
<tr>
<th>Strains</th>
<th>Relevant characteristics</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli CC118/pir</td>
<td>E. coli CC118 lysogenized with λ.pir phage for hosting plasmids with an oriV R6K</td>
<td>49</td>
</tr>
<tr>
<td>E. coli DH5<sub>3</sub></td>
<td>Routine cloning host strain</td>
<td>50</td>
</tr>
<tr>
<td>P. putida X<sub>wt</sub></td>
<td>Formerly called P. putida BXPu-LUX14. P. putida strain bearing a chromosomal Pu-luxCDABE fusion and xylR under the control of its own Pu promoter (innate negative feedback loop)</td>
<td>51</td>
</tr>
<tr>
<td>P. putida Pu-RBX</td>
<td>P. putida strain bearing a chromosomal Pu-luxCDABE fusion and xylR under the control of Pu (positive feedback loop)</td>
<td>39</td>
</tr>
<tr>
<td>P. putida Psal-RpN-X<sub>wt</sub></td>
<td>P. putida X<sub>wt</sub> expressing a surplus of rpoN under the control of a salicylate-inducible NahR/Psal regulatory system</td>
<td>This study</td>
</tr>
<tr>
<td>P. putida Psal-RpN-Pu-RBX</td>
<td>P. putida Pu-RBX expressing a surplus of rpoN under the control of a salicylate-inducible NahR/Psal regulatory system</td>
<td>This study</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plasmids</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RK600</td>
<td>oriV ColE1, RK2 mob<sup>+</sup> tra<sup>+</sup>, helper plasmids for tripartite matings</td>
<td>49</td>
</tr>
<tr>
<td>pCNB4</td>
<td>Mini-Tn5 delivery vector carrying the NahR/Psal regulatory system</td>
<td>37</td>
</tr>
<tr>
<td>pFH30</td>
<td>Broad host range expression plasmid for the rpoN gene of P. putida engineered with an improved ribosome binding site</td>
<td>36</td>
</tr>
<tr>
<td>pTn5 [Psal-RpN]</td>
<td>Mini-Tn5 delivery vector carrying the NahR/Psal regulatory system controlling rpoN expression</td>
<td>This study</td>
</tr>
</tbody>
</table>

not significantly altered by m-xylene, whether σ⁵⁴ was made at wild-type levels or overproduced owing to Tn5 [Psal-RpN]. The same samples were tested in parallel for Pu activity using light emission as a proxy of transcription initiation (Fig. 4B). The data revealed that Pu output in the strain where σ⁵⁴ had been augmented (P. putida Psal-RpN X_{wt}) was ≫ 5-fold higher than the counterpart with the naturally occurring levels of the factor (P. putida X_{wt}). To further examine this Pu hyper-activation we recorded light emission of the two strains along time but using 3-methylbenzyl alcohol (3MBA) instead of m-xylene as the aromatic inducer of the regulatory device. Since 3MBA is a weaker effector of XylR[−]³⁹, its use allowed us to zoom in the earliest effects of its addition to both strains as shown in Fig. 5. Note that for a more stringent comparison of the two conditions, fold-induction (rather than specific luminescence) was plotted vs. time. The results demonstrate notable magnification of Pu activity by only increasing the σ⁵⁴ pool. While P. putida X_{wt} displayed a higher induced activity (10 to 15-fold),
the equivalent strain with a higher σ^{54} pool reached ~120-fold at its peak of activity (approx. 18 hours after induction). Note, however that light emission did not start taking off until 6 h after inducer addition. This indicated that the mere overproduction of the factor (and plausibly an improved landscape of every promoter is constrained by the immediate availability of regulators fluctuate between constrained limits. These general consensus rule of thumb regarding control of TF expression is that, unlike the promoters they control, the levels of TF expression fluctuates within the same range (30–140 (ref. 35)). Such low levels not only cause considerable stochastic effects, but also make TF binding to Pu to be weak and easily competed out by other regulatory factors (Fig. 1). Artificially changing XylR levels is thus bound to have consequences. For instance, removal of the negative feedback loop that naturally rules xylR expression (Fig. 1) and its replacement by a self-induced positive feedback loop (PFL) that increases XylR upon exposure to cognate effectors increases the sensitivity and specificity of the regulatory node in response to aromatic inducers. On this background we wondered about the effects of modifying simultaneously XylR levels (with PFL) and σ^{54} levels (with the Psal-RpoN construct).

As before, we first simulated Pu output and XylR production under two artificial scenarios (the default wild-type scenario is simulated in Fig. 2A). In one case (Fig. 6A), XylR was under the control of Pu and therefore the innate limits imposed by self-regulation have been exchanged by a PFL (while σ^{54} levels are those of the wild type state). The instant consequence of this conversion is that XylR levels are predicted to grow when cells face m-xylene, a phenomenon that has been proven experimentally. But at the same time, the scenario of Fig. 6A predicts an enhancement of Pu output comparable to that anticipated by increasing σ^{54} levels-only (Fig. 2B, note the different scales of Y axes). The situation changes considerably when an externally controlled increase of σ^{54} is knocked-in into the simulation (Fig. 6B). The model then predicts Pu output to be super-amplified because of two convergent effects. One is the sheer augmentation of the sigma factor that enlarges the share of σ^{54}-containing RNA for Pu binding as discussed above. But this same effect further increases XylR levels, as its expression is placed under the control of Pu in the engineered PFL. This makes Pu to reach a new maximum state that boosts its overall transcriptional output with respect to the wild-type situation. Simulations of Fig. 6 thus suggested that a high-capacity regime can be engineered by combining overproduction of σ^{54} with a Pu-driven expression of xylR. To test this experimentally we resorted to strains $P. putida$ Pu-RBX ($P. putida$ xylR reporter bacteria in which the xylR gene is expressed through a Pu-driven PFL; Table 1 and Fig. 3E) and $P. putida$ Psal-RpoN-Pu-RBX (same as Pu-RBX but inserted with Tn5 [Psal-RpoN]; module #4 in Fig. 3D). As before, we grew these strains in the presence of 2 mM salicylic acid, added the cultures with the XylR effector 1 mM 3MBA and followed luminescence production along the next 16 h. The results, plotted as fold-induction vs. time, are shown in Fig. 7. Two salient features become evident. On the one hand, inspection of strain $P. putida$ Pu-RBX reveals that inducer-triggered XylR overproduction through the PFL engineered in the genetic module #3 [Pu-xylR] results in an increase of Pu inducibility in the same range (if slightly lower) than that observed in strain $P. putida$ Psal-RpoN-X wt as the consequence of increasing σ^{54} only (cf. Fig. 5). But the second and more remarkable feature is that $P. putida$ Psal-RpoN-Pu-RBX, which combines σ^{54} overproduction with the PFL that amplifies XylR levels, displays a still greater Pu output. While this behaviour was anticipated by the simulations of Fig. 6, the results of Fig. 7 exposed also an earlier response of the XylR/Pu device to inducer addition and a faster induction rate which were not predicted in the simplified model. Still, this effect is easy to explain mechanistically, as augmented levels of XylR and σ^{54}-RNAP are likely to displace other factors bound to Pu that prevent full occupation of the promoter during exponential growth in rich medium thus, bring about a response sooner than when they are in scarce supply. Therefore, the regulatory scenario engineered in strain $P. putida$ Psal-RpoN-Pu-RBX involves both a high-capacity regime and an ultra-fast response to inducer addition.

Merging augmented σ^{54} with genetically rewired XylR production

We next examined the second key factor of Pu activation: XylR. The general consensus rule of thumb regarding control of TF activity in vivo. Still, the results of Fig. 5 show that a moderate overproduction of σ^{54} allowed a sustained uplifting of Pu output, i.e. that the functional limit imposed by its naturally low concentrations can be overcome and the activity space of the promoter thus expanded.

![Fig. 5](image)

Fig. 5 Pu output dynamics in $P. putida$ X wt and $P. putida$ Psal-RpoN X wt. The insert specifies the genetic modules present in each strain. Bacteria were grown in the presence of salicylic and added with the XylR effector 3MBA as explained in the Experimental section.
Refactoring the XylR/Pu node for horizontal and vertical extension of the dose–response function

Apart from removing the auto-repression loop of XylR expression and thus producing more intracellular TF, we noticed before that the PFL-engineered in genetic cassette #3 (Fig. 3) endows cells with a more digital output in response to inducer addition, i.e. ultra-sensitivity to varying effector concentrations. On this basis, we wondered whether this property, which is endowed by the specific structure of the PFL of the \([\text{Pu-xylR}]\) module, is preserved in \(P.\ putida\ Psal-RpoN-Pu-RBX\), which harbours both engineered cassettes \([\text{Pu-xylR}]\) and \([\text{Psal-rpoN}]\). To answer this question, we measured the bioluminescence of \(P.\ putida\) RBX and \(P.\ putida\ Psal-RpoN-Pu-RBX\) with increasing concentrations of 3MBA. The data were fitted to a Hill function to gain an approximation of the dose–response relationship in either regulatory scenario (Fig. 8). A comparison of the adjusted parameters shows that the dose–response curves of both strains exhibit a different behaviour \((p < 0.0001)\) in which the combined \(P.\ putida\ Psal-RpoN-Pu-RBX\) strain gains in inducer sensitivity and responsiveness. Nevertheless, the comparison between both Hill slope values indicated that the steepness dose–response curves did not change with the strain \((p\ value = 0.7356)\). This indicated that the dynamic properties of the PFL embodied in the \([\text{Pu-xylR}]\) module are preserved, but not further increased upon combination with an augmented level of \(\sigma^{54}\). Taken together, the results of Fig. 8 signify that overproduction of both XylR and \(\sigma^{54}\) in the fashion described in this work expands the dose–response curve vertically (ultra-responsiveness) while producing at the same time a horizontal scaling.
Conclusion

In this work we show that artificially up-regulating \(\sigma^{54} \) levels of *P. putida* through an external signal and likewise increasing XylR concentration through an auto-inducible and \(\sigma^{54} \), dependent positive forward loop surmounts much of the physiological limits that constrain Pu activity *in vivo*. This creates a non-natural but still sustained high-capacity regime that probably reflects the maximum activity that the promoter can have and thus engages its full functional space. This is plausibly caused by the complete occupation of the binding sites for both XylR and \(\sigma^{54} \)-RNAP *in vivo*. These are typically not saturated because of the low concentrations of these two factors and the competition for the same DNA sequences by other cellular proteins. But regardless of mechanistic details, we show here that entering two genetic amplifiers for xylR and *rpoN* endows the Pu promoter with a superior performance by all criteria: higher net transcriptional output, better inducibility and an ultra-fast response along with a vertical extension of the dose–response curve.44,45 Yet, following the terminology of Ang *et al.*,44 note that better inducibility does not mean necessarily ultra-sensitivity, but expanded dynamic range, i.e. the regulatory node as a whole responds better to lower inducer concentrations.

As sketched in Fig. 9, the functional space of the XylR/Pu regulatory device can be abstracted as an object bounded by the individual thresholds imposed by the two limiting regulatory elements (XylR and \(\sigma^{54} \)). One can then picture a growing expansion of the same space through uplifting of either constraint. However, the boundaries cannot enlarge beyond the extant limits by just defeating one of the two thresholds and leaving the other element as it was. Since the Pu promoter is encoded in a transmissible plasmid,11 it is possible that constraints imposed by the host (e.g. levels of \(\sigma^{54} \)) vary from one species to the other, an issue that deserves further studies. In any case, only concerted escalation of both components XylR and \(\sigma^{54} \) can lead the system to occupy its full potential space. While this is unlikely to happen in naturally evolved systems, rational rewiring of the key components (as we have done here) allows taking the performance of such systems to their limits. This is of considerable interest for designing e.g. whole cell biosensors and heterologous expression devices in which the signal-response ratio is to be exacerbated for a more efficient performance of the thereby repurposed regulatory node.46–48

Experimental

Strains, culture conditions, and general procedures

The four *P. putida* strains used in study (Table 1) are derivatives of the reference strain KT2440 inserted with various combinations of the genetic cassettes indicated in each case. *E. coli* CC1181 pir was used as the host for propagating plasmids based on a R6K origin of replication.49 Bacteria were grown in Luria-Bertani (LB) medium and handled with habitual Laboratory procedures.50 When required, the medium was amended with specified concentrations of 3-methylbenzylalcohol (3MBA) or saturating vapours of m-xylene. Antibiotics were used at the following concentrations: piperacillin (Pip) 40 \(\mu \)g ml\(^{-1}\), chloramphenicol (Cm) 30 \(\mu \)g ml\(^{-1}\), gentamycin (Gm) 10 \(\mu \)g ml\(^{-1}\), kanamycin (Km) 50 \(\mu \)g ml\(^{-1}\), and potassium tellurite (Tel) at 80 \(\mu \)g ml\(^{-1}\). For PCR reactions, 50–100 ng of the DNA template indicated in each case was mixed in a 100 \(\mu \)l mixture with 50 pmol of each of the primers specified and 2.5 units of Pfu DNA polymerase (Roche) and later confirmed by DNA sequencing. Other gene cloning techniques and Molecular Biology procedures were carried out according to standard methods.50

Genetic constructs

Hybrid transposons bearing a *Pu-luxCDABE* reporter system,39,51 a cassette expressing xylR under the control of its native *Pu* promoter51 and a DNA segment in which xylR transcription is placed under *Pu* (i.e., subject to a self-amplifying loop59) have been described before. They are sketched as genetic modules #1,

![Fig. 9](image-url) Schematic representation of the functional space of the XylR/Pu device in different regulatory regimes. (A) The outer boundary of the system could be represented as the result of two different and mutually limiting contributors: activated XylR (XylRa, green) and \(\sigma^{54} \)-RNAP (\(\sigma^{54} \), purple). The potential boundary of the functional space is not filled because XylRa and \(\sigma^{54} \)-RNAP inputs are bounded by individual thresholds of either component. These boundaries may improve, but not reach their upper limits by just overcoming constraints of one of the two factors, either XylRa (B) or \(\sigma^{54} \) (C). Only concerted escalation of both components can lead the system to occupy its full potential space (D).

This journal is © The Royal Society of Chemistry 2015
#2 and #3 in Fig. 3A, B and C, respectively. A fourth construct for conditional overexpression of the \(\sigma^{34} \) sigma factor was engineered using pCNB4 as the assembly vector. This is a mini-transposon delivery plasmid, allowing expression of the gene of interest under the control of the salicylate-responsive device formed by the transcriptional factor called NahR and its cognate promoter, Psal. The pTn5 [Psal-RpoN] plasmid was thereby constructed by cloning the promoterless rpoN gene of *P. putida* KT2440 (excised from expression plasmid pFH30; ref. 36) downstream the Psal promoter of pCNB4. This originated as the genetic module #4 shown in Fig. 3. Then, for delivering such a module from the donor *E. coli* CC118spir (pTn5 [Psal-RpoN]) to the genome of different *P. putida* recipients we used a filter mating technique previously described. Briefly, a mixture of donor, recipient and helper strain *E. coli* HB101 (pRK600) was laid on 0.45 \(\mu \)m filters in a 1 : 1 : 3 ratio and incubated for 8 h at 30 °C on the surface of LB-agar plates. After incubation, cells were resuspended in 10 mM MgSO₄ in either case, and appropriate dilutions plated on M9/succinate amended with suitable antibiotics. This counter-selected the donor and helper strains and allowed growth of the *P. putida* clones that had acquired the insertion. Authentic transposition was verified by checking the sensitivity of individual exconjugants to the marker of the delivery vector, piperacillin. The distribution of DNA modules #1 to #4 in the genomes of each of the *P. putida* strains used in this work is summarized in Fig. 3D and goes as follows. *P. putida* X-wt (formerly called *P. putida* BXPu-LUX14; ref. 51) has its genome inserted with cassettes encoding *Pu-lux* (module #1) and *Pu-xyLR* (module #2). *P. putida* Pu-RBX contains *Pu-lux* (module #1) and *Pu-xyLR* (module #3). *P. putida* Psal-RpoN-X-wt is like *P. putida* X-wt but added with cassette *Psal-rpoN* (module #4). Finally *P. putida* Psal-RpoN-Pu-RBX is like *P. putida* Pu-RBX but added with *Psal-rpoN* (module #4).

Bioluminescence assays

To measure light emission using *P. putida* cells, 2 ml of each culture were first pre-grown overnight in LB at 30 °C, diluted to an OD₆₀₀ of 0.05 and re-grown up to an OD₆₀₀ ~ 1.0. At that point samples were exposed to either saturating vapours of \(m \)-xylene or increasing concentrations of 3MBA added to the growth medium as indicated in each case. For dose-response studies 200 \(\mu \)l aliquots of the cultures treated with 3MBA were placed in 96 well plates (NUNC) and light emission and OD₆₀₀ measured in a Victor II 1420 Multilabel Counter (Perkin Elmer). In the case of samples exposed to \(m \)-xylene, 200 \(\mu \)l aliquots were recovered from the culture flasks, placed in the same microtiter plates and light emission and OD₆₀₀ recorded as before. The specific bioluminescence values were the result of dividing total light emission (in arbitrary units) by the optical density of the culture (OD₆₀₀). Figures shown through the article represent the average of at least three biological replicates.

Protein techniques

SDS-PAGE was performed by standard protocols\(^{30}\) using the Miniprotein system (Bio-Rad). Whole-cell protein extracts were prepared by harvesting the cells (10 000 \(\times \) g, 5 min) from 1 to 20 ml of cultures (depending of the OD₆₀₀) in LB and resuspending the pellets in 100 \(\mu \)l Tris HCl 10 mM pH 7.5. Next 2 \(\times \) SDS-sample buffer (tris-HCl 120 mM pH 6.8, SDS 2%, w/v, glycerol 10%, v/v, bromophenol blue 0.01%, w/v, 2-mercaptoethanol 2%, v/v) was added to the samples, boiled for 10 min, sonicated briefly (~5 s) and centrifuged (14 000 \(\times \) g, 10 min). Samples with thereby prepared extracts equivalent to \(\sim10^8 \) cells were loaded per lane. After the electrophoresis they were transferred to a polyvinylidene difluoride membrane and blocked for 2 h at room temperature with MBT buffer (0.1% Tween and 5% skim milk in phosphate-buffered saline, PBS). For immunodetection of \(\sigma^{34} \), we used the previously described recombinant antibody scFv C2. \(^{34}\) Membranes were incubated with 20 ml of MBT-buffer containing 500 ng of scFv C2 for 1 h. Unbound antibodies were eliminated by four washing steps of 5 min in 40 ml of PBS, 0.1% (v/v) Tween 20. Next, anti-E-tag-Mab-POD conjugate (1 mg ml\(^{-1}\) diluted 1:5000 in MBT-buffer, Amersham Pharmacia Biotech) was added for detecting the bound scFvs. After 1 h incubation, the membranes were washed five times with PBS/0.1% (v/v) Tween 20. The protein band corresponding to \(\sigma^{34} \) was detected with a chemiluminescent substrate (ECL; Amersham Pharmacia Biotech).

Modelling

Models presented in this work were made by setting a number of ordinary differential equations describing the TOL control network. Simulations and other calculations were done using MATLAB\(^{38}\). (See ESI† for further details). Dose–response curve analyses were performed using GraphPad Prism version 5.00, GraphPad Software, www.graphpad.co.

Acknowledgements

We thank Matthew Livesey for careful reading of the manuscript and Silvia Fernández for constructing the pTn5 [Psal-RpoN] plasmid. This work was supported by the BIO Program of the Spanish Ministry of Economy and Competitiveness, the ST-FLOW, EVOProg and ARISYS Contracts of the EU, the ERANET-IB program and the PROMT Project of the CAM.

References
