

VeGIN Webinar Stakeholder Event

Progress update on Clubroot resistance in Brassica and *Nasonovia ribisnigri* resistance in lettuce

1st December 2021

Graham Teakle

Clubroot

- Caused by soil-borne obligate biotroph Plasmodiophora brassicae
- Affects roots of vegetable brassicas and oilseed rape
- Reduces yield and ultimately kills the plant
- Once a field is infected resting spores survive for years
- There is no effective chemical control
- High pH (liming) reduces pathogenicity
- Genetic resistance has been deployed from Brassica rapa
- There is a new resistance-breaking strain of the pathogen (CN isolate)

2018 VeGIN clubroot field trial

- 4 reps of 3 plants per accession (some had fewer plants)
- Comprises 148 accessions:
 - 70 B. oleracea DFFS accessions
 - 69 wild C genome founder accessions
 - 9 other lines
- Guard = clubroot resistant red cabbage (Lodero F1) provided by Elsoms Seeds

Comparison of 2019 Field Trial with *B. rapa* resistance-breaking isolate

Included:

- Resistant varieties
- Clubroot differential set from National Vegetable Genebank

New strategy for finding resistance

- ➤ Small scale screen of genebank accessions identified in above screens with the CN isolate
- ► Identify accessions that showed variation between individuals and screen a larger number of plants
- ► Genotype the plants to see if we can map resistance loci

Alternatively make a segregating population by crossing (slow!):

CN isolate clubroot screen in controlled environment cabinets

Lettuce-currant aphid (Nasonovia ribisnigri)

- Specialist pest of lettuce (summer host)
- ▶ Difficult to control with pesticides
- ► Nr resistance gene bred into many lettuce vars
- ➤ The Nr:1 resistance-breaking biotype is now becoming a significant pest of UK outdoor lettuce production

Develop new *Nasonovia ribisnigri* resistance resources

Extreme lines selected for crossing

- Performed Resistant x Susceptible crosses
- Confirmed F1 plants were genuine crosses by genotyping
- Generate recombinant inbred line mapping populations to map resistance loci

	S1			S2			S3		
	F1	F2	F3	F1	F2	F3	F1	F2	F3
R1									
R2	16	1 (1	5	3		7	1	
R3	23		$\bigg) \ \overline{\hspace{1cm}}$	1		,			
R4	8			2					
R5			,						

Know your enemy: Nasonovia ribisnigri genetics & genomics

F1 crosses		Resistance-breaking biotype (Nr:1)			
		UK361	Kent Cl		
Susceptible	WT Kent	3	3		
biotype (Nr:0)	Nr 8	0	6		

- ► Each colony was raised from a single fundatrix
- ► All F1s not able to grow on *Nr* lettuce => Rb phenotype is recessive

PhD Student Dion Garrett, RRES

- Genome sequencing
- ► Gene expression
- Population genetics
- ► Alternative host plants
- ► Sampling/modelling

Generation of F2 aphid population

Aphid F1 clone no.	Female	Biotype	Male	Biotype	No. Eggs	Hatched	Surviving colonies
11.3	UK631	Rb	WT Kent	WT	57	5	0
12.2	WT Kent	WT	Kent Cl	Rb	19	2	0
12.4	WT Kent	WT	Kent Cl	Rb	1	0	0
13.1	Nr 8	WT, Insecticide R	UK361	Bb	414	69	2
13.6	Nr 8	WT, Insecticide R	UK631	Rb	0	0	0

Repeating this – another 80 eggs laid so far

Acknowledgements

Clubroot work

Lauren Chappell

Neale Grant

Nicole Pereira

Angela Hambidge

John Walsh

Eric Holub

Charlotte Allender

Graham Teakle

Ian Crute

Horticultural Services team

Nasonovia ribisnigri work

Maz Elliott

Rosemary Collier

Lauren Chappell

Neale Grant

Graham Teakle

Guy Barker (aphid genomics)

Richard Stark (aphid bioinformatics)

Dion Garrett (PhD student, University of Warwick, Rothamsted Research)
Ramiro Moralles (Rothamsted Research)
James Bell (Rothamsted Research – Rothamsted Insect Survey)
Emma Garfield (G's)

