Soil and Plant Nutrition at Wellesbourne

A Flavour of the Research from the last 70 Years

Ian Burns

18th December 2019 / Celebrating 70 years of research at Wellesbourne

Post-war vegetable production

- largely relied on market garden systems with hand labour and crops fertilised with animal manures

Vegetable production changed

- to mechanised farm-scale systems with nutrients supplied from inorganic NPK fertilisers

NPK Fertiliser Recommendations for Vegetable Crops

Duncan Greenwood CBE, FRS

Response equation:

$$\frac{1}{Y} = \frac{1}{1 - (N_S + N_F)/\alpha_N} \left[\frac{1}{A} + \frac{1}{B_N(N_S + N_F)} + \frac{1}{B_P(P_S + P_F)} + \frac{1}{B_K(K_S + K_F)} \right]$$

New space-saving systematic experimental designs

NPK Fertiliser Recommendations for Vegetable Crops

Dynamic model for predicting day-to-day changes of nutrients in the soil-plant system

Dynamic model for predicting day-to-day changes of nutrients in the environment

Web-based models for N, P and K

Predictions of the models contributed to UK Policy Advice

Fertiliser placement techniques

can increase growth and enhance yields with less fertiliser

Injection of liquid starter fertilisers into the soil below crop rows

Injection of fertiliser granules into soil beside crop rows

Contribution of crop residues to nutrient supply

Essential data for adjusting fertiliser rates to crops in vegetable rotations

provides N fertiliser advice and assessments of the financial and environmental impacts from whole rotations in both intensive and organic production systems

Crops require many different nutrients

Nutrient deficiency symptoms in crops

Alan Scaife and Mary Turner

Publications on nutrient disorders

EU Legislation on nitrate accumulation in glasshouse and field-grown lettuce

Red Tractor Assurance Scheme

Our research informed the Codes of Practice for Field and Protected Lettuce

Screening lettuce genotypes for nitrate

Hydroponic - Nutrient Film Technology N source: nitrate only

for both the RILs and the Diversity Set under summer and winter conditions

Soil Culture in the field N source: nitrate and ammonium for the RILs only under summer conditions

Screening the lettuce diversity set for nitrate

Variation in ¹³⁷Cs and ⁹⁰Sr accumulation in brassica

Up to 70 Brassica oleracea cultivars screened in glasshouse and field experiments

There was

- a 35-fold variation in radio-caesium
- " a 23-fold variation in radio-stronthium

- 5 cultivars had consistently lower ¹³⁷Cs concentration
- 3 cultivars had consistently lower ⁹⁰Sr concentration
- ["] 1 cultivar was consistently lower in both ¹³⁷Cs and ⁹⁰Sr concentrations

Phosphorus use effciency in *Brassica oleracea*

Glasshouse experimental design:

- 2 levels of P
- 3 replicates per DFS line (376 accessions)
- 9 replicates per F₁ (74 accessions)

Field experimental design:

4 levels of P

3 replicates per F₁ (74 accessions)

Engineering a smart plant for P nutrition

Phil White, John Hammond and Martin Broadley

GUS expression in smart arabidopsis

GUS 22 / 1

GUS 13 / 4

Time (hours) after phosphate withdrawal

Summary of Agronomic and Environmental Achievements

- Developed the first inorganic NPK recommendations for vegetable crops
- Devised dynamic models of processes controlling crop response to NPK fertilisers and their impact on the environment for improving fertiliser practice and advising policy makers on environmentally benign strategies
- Created the first computer-based Decision Support system giving site-specific N fertiliser advice for vegetable crops directly to growers
- Developed techniques and advice for improving fertiliser use efficiency
- Devised protocols and identified cultivars for producing 'safe' crops under adverse climatic and soil conditions
- Produced guides for identifying nutrient disorders in vegetable crops
- Identified sources of genetic control of nitrate accumulation in lettuce and P deficiency in Brassica

In future our preliminary research on developing functional foods byimproving the micronutrient content of crops (work that I have not had time to describe here) should be continued with the aim of helping to meet human dietary requirements

Key Contributors to Soil and Plant Nutrition Research

Chris Bell

Gary Bending

Helen Bowen

Martin Broadley

Ian Burns

Trevor Cleaver

Carol Coleman

Ann Draycott

Simon Elliott

Abraham Escobar-Gutierrez

Tony Gerwitz

David Goodman

Duncan Greenwood

John Hammond

Fred Haworth

John Hunt

David Jones

Andy Jukes

Rob Lillywhite

Mike McKee

Mark Meacham

Barry Mulholland

Kim Niendorf

Ron Page

Clive Rahn

Hugh Rowse

Alan Scaife

Dave Stone

Mary Turner

Phil White

Kefeng Zhang

