

The Biology & Integrated Management of the Bean Seed Fly

Update Meeting: 08/12/2021 Becca McGowan & Rosemary Collier SCHOOL OF LIFE SCIENCES

WARWICK

Contents

WARWICK

Introduction

- Bean Seed Fly (BSF): Complex of two species
- Root maggot: Feeding on the seed and stem of a wide range of crops
- The problem: Lack of effective insecticides (especially seed treatments)

WARWICK

Project Aim:

SCHOOL OF LIFE SCIENCES

Contribute towards an integrated pest management strategy to reduce crop and economic losses caused by the BSF **Objectives:**

Objective One

Overwintering biology

WARWICK

Pattern of activity

- Life cycle⁵: Eggs Larvae Pupae Adult
- Environmental drivers: **Temperature**, daylength...

WARWICK

SCHOOL OF LIFE SCIENCES

Pattern of activity

- Reduced activity during winter Are they in diapause (similar to hibernation)?
- Large number to emerge in Spring⁶

Research Questions

If wild BSF enter diapause, when do they complete diapause?

Do wild BSF enter diapause?

WHY?

Aid predictions of spring emergence

How long do BSF pupae spend in diapause?

General Methods

Do wild BSF enter diapause? On

YES Only those laid towards late September

If wild BSF enter diapause, when do they complete diapause?

BY THE MIDDLE OF AUTUMN?

Egg laying date: 18/09 – 22/09 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 071012022 16/03/2021 21/2/2020 19/01/2021 18/02/2022 02/03/2021 22/02/2021 31/03/2021 27/10/2020

Sub-Sample Date

Proportion to emerge by day 15 at 20°C

How long do BSF pupae spend in diapause?

BETWEEN 0 – 50 DAYS WARWICK

Current Conclusions

- The overwintering biology of BSF is not as expected
- A small proportion of wild BSF enter diapause in early Autumn
- Their diapause is relatively short (compared to Cabbage Root Fly & Onion Fly)
 Future Work
- Further repeats of original experiments
- What conditions initiate, maintain and end diapause?

WARW/ICK

Objective Two

Monitoring the Bean Seed Fly

WARWICK

Blue Sticky Traps

- BSF can be easily confused with similar species
- Sticky traps catch more BSF than yellow water traps⁷
- Blue sticky traps catch larger ratios of BSF to Cabbage Root Fly⁸
- Sticky traps containing baits which attract BSF are marketed to catch more BSF than traps not containing a bait

WARWICK

Research Question

SCHOOL OF LIFE SCIENCES

Traps that catch more BSF than similar species

Methods

- BSF counts compared on blue sticky traps with baits and no baits attached:
 - In 4 different locations at Warwick Crop Centre
 - Over 4 weeks

Results

SCHOOL OF LIFE SCIENCES

 Significantly more BSF were caught on traps containing a bait than those not containing a bait (P = 0.01, W = 183.5)

Current Conclusions

Do blue sticky traps with a bait attached catch more BSF than blue sticky traps not containing a bait?

Future Work

- Which trap set up catches a higher ratio of BSF to similar species?
- Is there a difference in BSF counts on traps placed at different heights?

Objective Three

Forecasting the BSF

WARWICK

Insect Forecasts

- It would be beneficial to predict the spring emergence of the BSF
- Insect forecasts predict insect activity based on environmental factors such as temperature⁹
- Many models use the accumulation of day-degrees to predict insect activity^{6,10}

Research Question

SCHOOL OF LIFE SCIENCES

Aid decision making (e.g. sowing timing)

Methods

- 5 years of BSF activity data (2014, 2016, 2017, 2018, 2019)
- BSF activity data: 3 water traps & BSF counted 2 x weekly
- Day degrees:
 - Soil temperature
 - Base temperature: 3.9°C⁶
 - Day degrees accumulated from 1st January

Results

Estimating the peak

 Average accumulated day-degrees for the estimated start and peak of the emerging generation of BSF

Statistical Analysis

- An equation to estimate the pattern of the spring emergence of BSF
- A significant relationship between the accumulation of day-degrees and the proportion of BSF caught for the emerging generation of BSF (P<0.0001)

Percentage flies	Accumulated	
caught	Day-Degrees	
10	178	
25	241	
50	313	
75	384	
90	442	
100	523	

WARW/ICK

Comparing predictions to observations

Estimating the peak

- Observed BSF counts for 2021
- Observed day-degrees for the start & peak of emergence

Estimating the proportion of BSF to emerge

WARWICK

- Proportion of BSF to emerge from the emerging generation of BSF for 2021
- <u>Date</u> difference: (Observed -Predicted)

Percentage flies caught	Observed Date	Predicted Date	Difference
10	15/04	05/04	10
25	29/04	21/04	8
50	09/05	30/04	9
75	16/05	11/05	5
90	27/05	18/05	9
100	08/06	28/05	11

Current Conclusions

SCHOOL OF LIFE SCIENCES

Can the accumulation of daydegrees be used to predict the spring emergence of BSF?

YES (A statistically significant relationship)

Future Work

- Further development of the model combining new knowledge gained about BSF overwintering biology
- Test the accuracy of the model in different regions of the UK

Aid decision making (e.g. sowing timing)

Objective Four

Cultural & Interference Strategies

WARWICK

Cultivation & Covering a Crop

- BSF are stimulated to lay eggs in areas of organic matter such as recently cultivated soils¹¹
- Delaying the time between cultivating the soil and sowing the crop may reduce damage caused by BSF
- Row covers may prevent BSF from reaching the soil to lay eggs^{12,13}
- If cultivation occurs close in time to sowing the crop, covering the crop with a mesh may reduce damage caused by BSF

WARWICK

Research Question

SCHOOL OF LIFE SCIENCES

Reduce crop damage caused by the BSF

Methods

- Replicated field trial
- Vining peas: 46 seeds per m per row & 3 7 cm depth
- Power harrow & polyester row cover
- Assessments: Emerged plants per bed, BSF tunnelling in seed, number of seeds containing larvae
- Repeated 3 times in 2021

Cultivation (days before sowing)	Crop Covering Timing
21	No covering
14	Day of sowing
7	Day after sowing
3	
1	
0	

Contraction of the second seco

WARWICK

Very low numbers of BSF at Warwick Crop Centre in 2021

Flies/trap/day Date of Spring Year **Emergence Peak** 11 May 2021 8 9 April 14 2019 27 April 2018 17 13 April 2017 21 3 May 36 2016 17 April 2015 39 2014 9 May 35 13 May 2013 33 23 April 2012 49 15 April 19 2011

WARWICK

SCHOOL OF LIFE SCIENCES

Results

- Repeat One & Two: No significant findings
- Repeat Three: Trends

Current Conclusions

Can the timing of cultivation and covering of the crop in relation to sowing the crop reduce damage caused by BSF?

??? – Becky's data shows more of an effect

Future Work

Repeat the whole experiment next year with addition of organic matter

Conclusions (So far...)

Conclusions

1	 Overwintering biology 	A proportion of BSF enter diapause in early Autumn and it is relatively short
2	 Monitoring 	Blue sticky traps with a bait attached catch more BSF than blue sticky traps with no bait attached
3	Forecasting	The spring emergence of BSF can be predicted using accumulated day- degrees
4	 Cultural & interference strategies 	Delaying the time between cultivation & sowing or covering the crop show potential but further research required
	1	

Many thanks for listening!

Big thank you to Rosemary & Rob (Supervisors at Warwick), Becky (Supervisor at PGRO), Andy & Maz (Warwick), Charlotte & Dave (Advisory Panel at Warwick), Horticultural Services at Warwick, PGRO, AHDB & to all of you for your involvement & input WARWICK

WARWICK

References

SCHOOL OF LIFE SCIENCES

1. Savage, J., Fortier, A., Fournier, F. & Bellavance, V. Identification of Delia pest species (Diptera: Anthomyiidae) in cultivated crucifers and other vegetable crops in Canada. *Can. J. Arthropod Identif.* **29**, 1–40 (2016).

2. Collier, R. H. Factsheet: Bean Seed Fly. 1–4 (2012).

3. Vea, E. V, Webb, D. R. & Eckenrode, C. J. *Seedcorn Maggot Injury*. (1975).

4. Karuppuchamy, P. & Venugopal, S. Integrated Pest Management of major pests and diseases in eastern Europe and the Caucasus. Breeding Oilseed Crops for Sustainable Production: Opportunities and Constraints (2017). doi:10.1016/B978-0-12-801309-0.00020-3

5. Throne, J. E. & Eckenrode, C. J. Development Rates for the Seed Maggots Delia platura and D. florilega (Diptera: Anthomyiidae). *Environ. Entomol.* **15**, 1022–1027 (1986).

6. Broatch, J. S., Dosdall, L. M., Clayton, G. W., Harker, K. N. & Yang, R.-C. Using Degree-Day and Logistic Models to Predict Emergence Patterns and Seasonal Flights of the Cabbage Maggot and Seed Corn Maggot (Diptera: Anthomyiidae) in Canola. *Environ. Entomol.* **35**, 1166–1177 (2006).

7. Broatch, J. S. & Vernon, R. S. COMPARISON OF WATER PAN TRAPS AND STICKY TRAPS FOR MONITORING DELIA SPP. (DIPTERA: ANTHOMYIIDAE) IN CANOLA. *Can. Entomol.* **129**, 979–984 (1997).

8. Finch, S. & Collier, R. H. Effects of the angle of inclination of traps on the numbers of large Diptera caught on sticky boards in certain vegetable crops. *Entomol. exp. appl* **52**, 23–27 (1989).

9. Olatinwo, R. & Hoogenboom, G. Weather-based Pest Forecasting for Efficient Crop Protection. *Integr. Pest Manag. Curr. Concepts Ecol. Perspect.* 59–78 (2013). doi:10.1016/B978-0-12-398529-3.00005-1

10. Funderburk, J. E., Higley, L. G. & Pedigo, L. P. Seedcorn Maggot (Diptera: Anthomyiidae) Phenology in Central Iowa and Examination of a Thermal-Unit System to Predict Development Under Field Conditions. *Environ. Entomol.* **13**, 105–109 (1984).

11. Hammond, R. B. Influence of Cover Crops and Tillage on Seedcorn Maggot (Diptera: Anthomyiidae) Populations in Soybeans. *Environ. Entomol.* **19**, 510–514 (1990).

12. Matthews-Gehringer' And, D. & Hough-Goldstein, J. *Physical Barriers and Cultural Practices in Cabbage Maggot (Diptera: Anthomyiidae) Management on Broccoli and Chinese Cabbage. J. Econ. Entomol* **81**, (1988).

13. Hough-Goldstein, J. A. Tests of a Spun Polyester Row Cover as a Barrier Against Seedcorn Maggot (Diptera: Anthomyiidae) and Cabbage Pest Infestations. *J. Econ. Entomol.* **80**, 768–772 (1987).