Trial system design and results to date

Catherine Keeling Warwick Crop Centre

N analysis

	Maize/Slurry (Separated)	Maize (Separated)	Potato (Whole)	Slurry (Whole)	Food (Whole)	Food (Separated)
	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
Total N	3620	3801	2914	4287	5876	4257
Mineral N	1489	1606	1933	3605	3738	2547
Ammonium-N Nitrate-N	1484 5	1602 5	1932 1	3603 2	3736 2	2543 4
Min. N excess	12 x	13 x	16 x	30 x	31 x	21 x

Cambridge Eco Ltd

Mineral N

In raw state digestates have:

Between 10 and 30 times too much min. N

Dilution required

- 100% of min. N in the form of ammonium
 - Direct toxicity
 - Acidifcation of rootzone

Nitrate amendment recommended

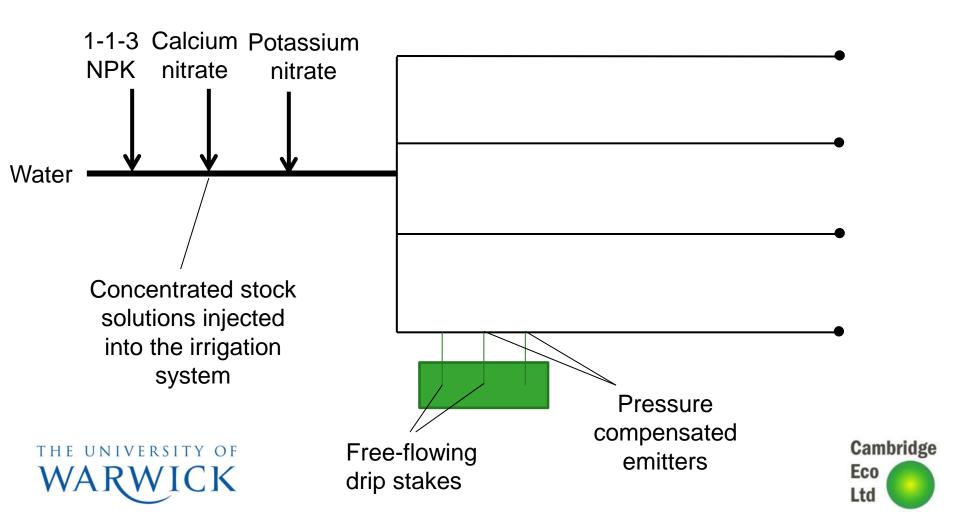
Mineral N

Digestates diluted to achieve 120mg/l total min. N

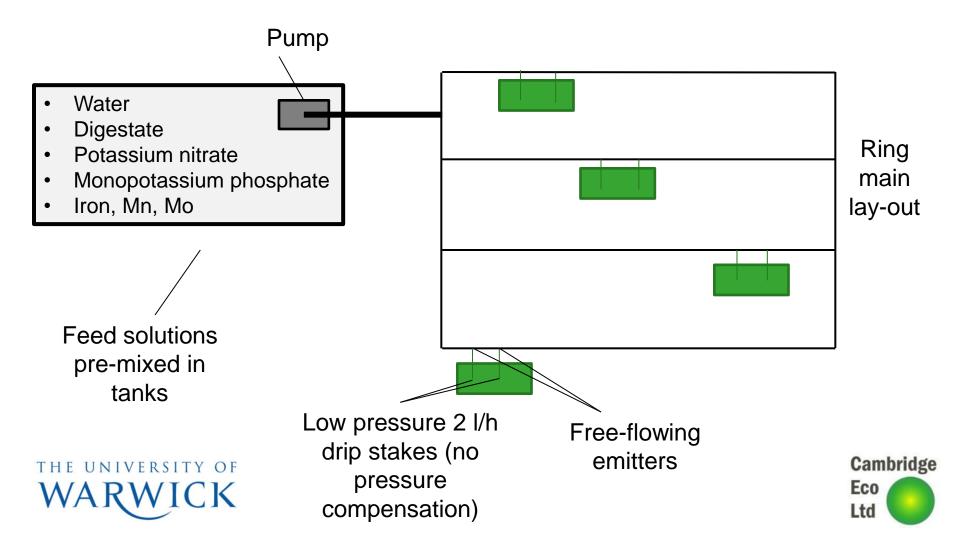
Nitrate amendment

The 120 mg/l min. N is comprised of:

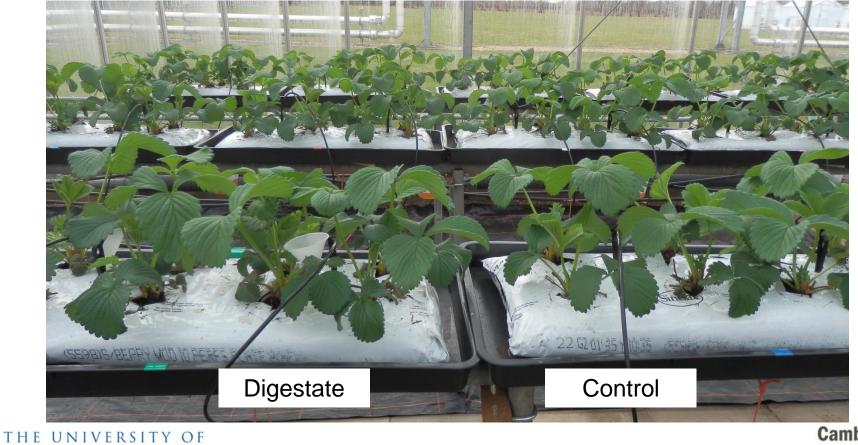
- 60% ammonium-N (from digestate)
- 40% nitrate-N (from amendment)



Diluted digestates


	Target	Maize/Slurry (Separated)	Maize (Separated)	Potato (Whole)	Slurry (Whole)	Food (Whole)	Food (Separated)	Amendment
	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	(as KNO ₃)
Ν	120-150	71	71	71	71	71	71	+ 50
Req. di	lution factor	(21x)	(23x)	(27x)	(51x)	(53x)	(36x)	
Р	40.55	11	8	4	4	4	3	(as MKP) + 45
г К	40-55 250-300	175	150	179	72	43	41	+ 45
Ca	100-120	52	43	29	33	29	33	(as KNO ₃ & MKP)
Mg	25	12	9	6	8	6	6	
Fe	<mark>1200-1700</mark>	1897	767	176	446	138	240	+1200
Mn	500-800	164	107	30	86	25	36	+ 500
Мо	20-50	0	0	0	0	0	0	+ 40
Total soli	ds (%)	0.26	0.22	0.08	0.10	0.05	0.08	
EC (dS m ⁻¹) UNIVER	RSITY OF	2.2	2.1	2.1	1.9	2.1	1.9	Cambridge Eco Ltd

THE


Typical commercial system

Experimental system

Day 18 (12 March)

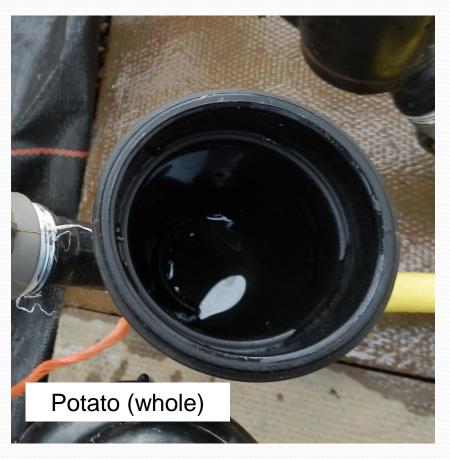
Leaf growth (Day 18) (length of largest terminal leaflet)

Treatment	Mean (mm)	(s.e.)	
Food (whole)	100	а	(1.7)
Control	99	а	(2.6)
Maize (sep.)	98	а	(1.4)
Food (sep.)	97	а	(2.1)
Potato (whole)	97	а	(2.5)
Maize/Slurry (sep.)	95	а	(1.2)
Slurry (whole)	95	а	(2.9)

*Means followed by different letters would indicate significant difference at the 5% level (GenStat: Anova and Tukey test)

Initiation of flowering (Day 20, 14 March)

Treatment	Mean (per bag	(s.e.)	
Control	9	а	(2.0)
Potato (whole)	8	а	(1.3)
Food (whole)	8	а	(1.7)
Slurry (whole)	8	а	(0.6)
Food (sep.)	6	а	(0.7)
Maize/Slurry (sep.)	6	а	(2.0)
Maize (sep.)	6	а	(1.5)

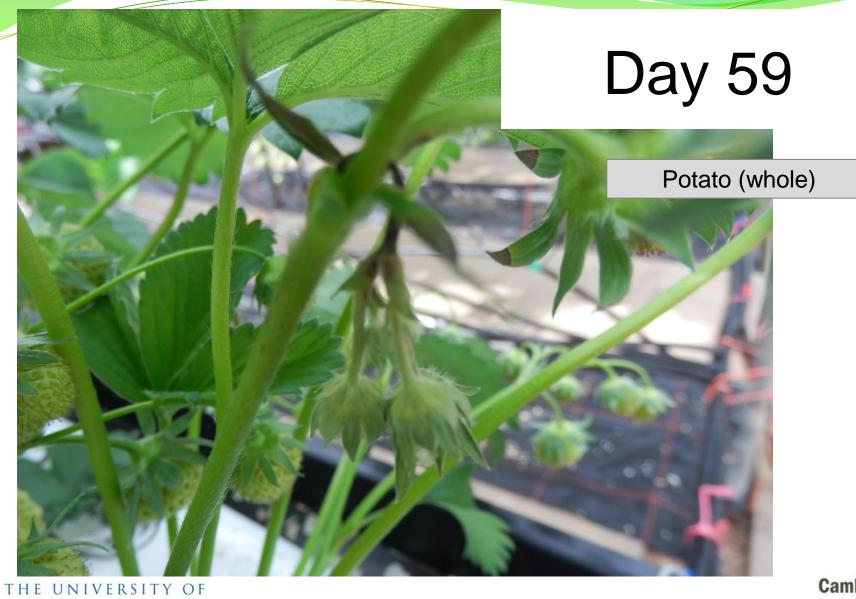

*Means followed by different letters would indicate significant difference at the 5% level (GenStat: Anova and Tukey test)

Sedimentation

THE UNIVERSITY OF WARWICK

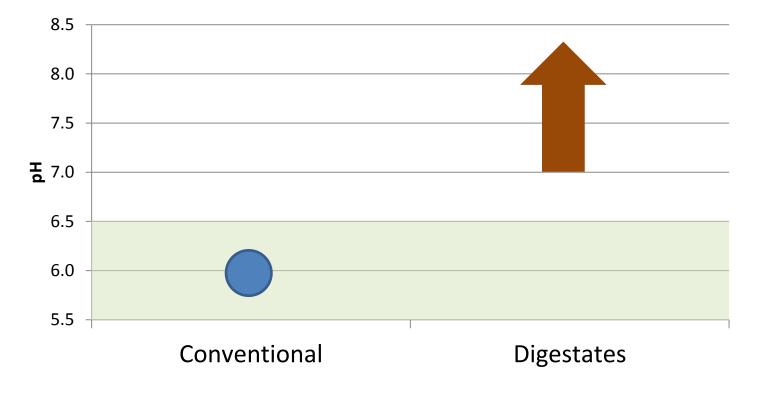
Day 52

Day 52: Calcium deficiency


THE UNIVERSITY OF WARWICK

THE UNIVERSITY OF WARWICK

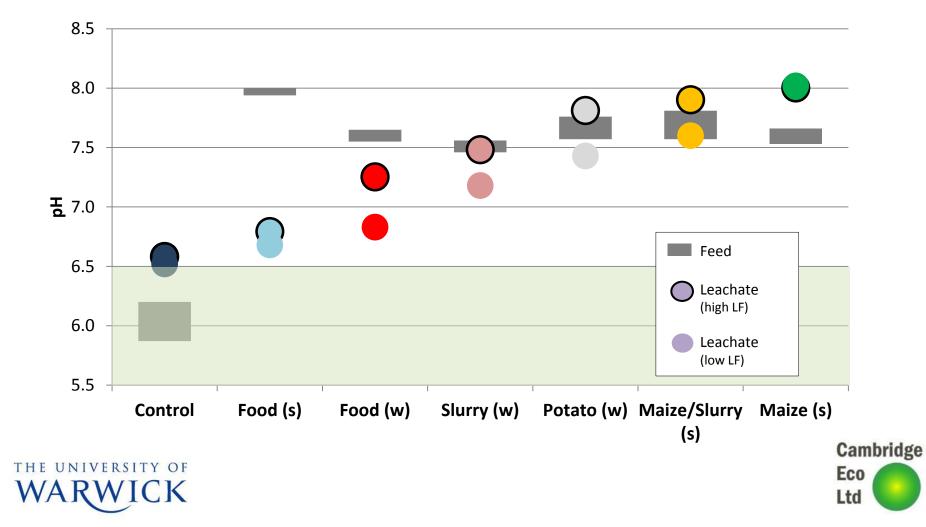
WARWICK

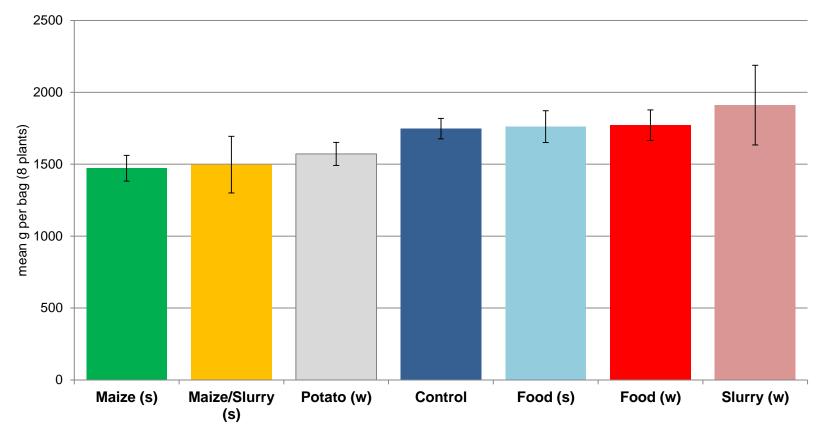

Cambridge Eco Ltd

Diluted digestates

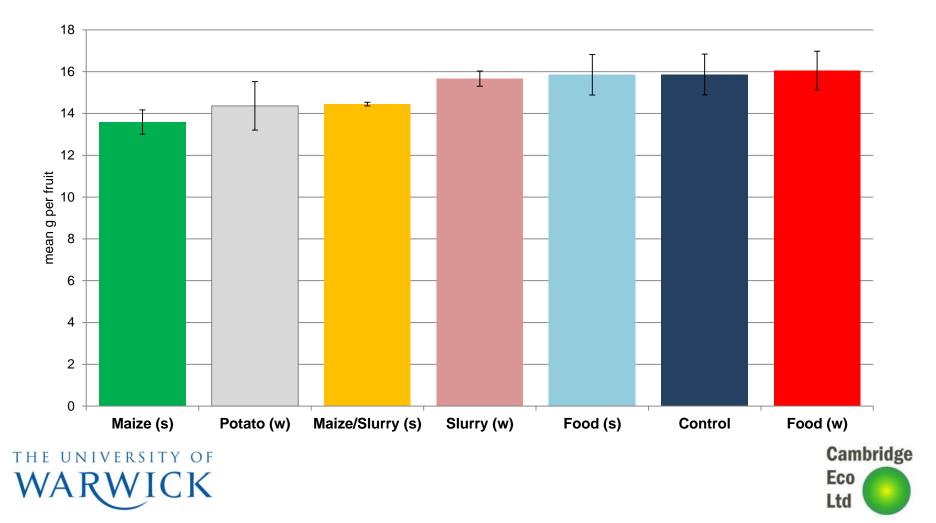
	Target	Maize/Slurry (Separated)	Maize (Separated)	Potato (Whole)	Slurry (Whole)	Food (Whole)	Food (Separated)	Amendment	
	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	(as KNO ₃)	
Ν	120-150	71	71	71	71	71	71	+ 50	
Req. di	lution factor	(21x)	(23x)	(27x)	(51x)	(53x)	(36x)		
								(as MKP)	
Р	40-55	11	8	4	4	4	3	+ 45	
K	250-300	175	150	179	72	43	41	+ 200	40
Ca	100-120	52	43	29	33	29	33	(as KNO ₃ & MKP)	
Mg	25	12	9	6	8	6	6	· · · · · · · · · · · · · · · · · · ·	
U									
Fe	1200-1700	1897	767	176	446	138	240	+1200	
Mn	500-800	164	107	30	86	25	36	+ 500	
Мо	20-50	0	0	0	0	0	0	+ 40	
Total soli	ds (%)	0.26	0.22	0.08	0.10	0.05	0.08		
EC (dS m ⁻¹)		2.2	2.1	2.1	1.9	2.1	1.9	Cambrid	ØP
	RSITY OF							Eco	50
ARW	/ICK							Ltd	

тне W

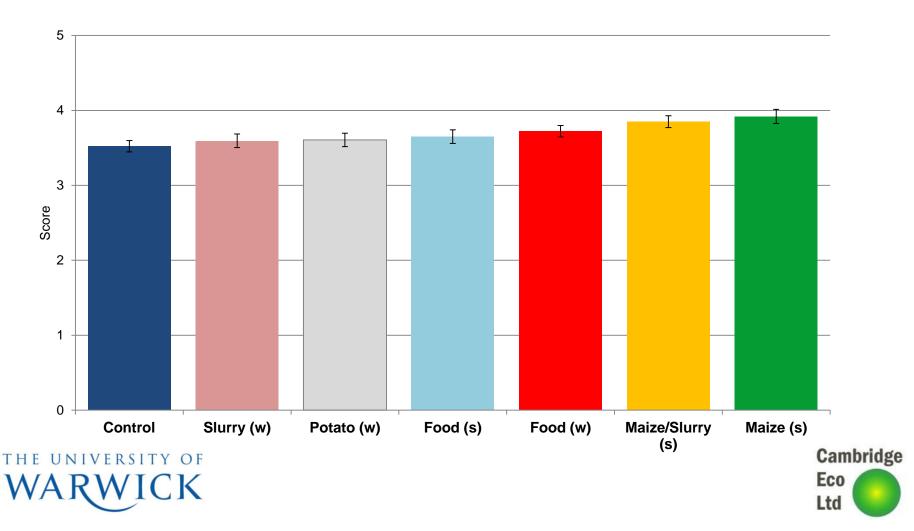




pН


Total fruit weight (up to 17 May)

THE UNIVERSITY OF WARWICK



Average fruit weight (up to 17 May)

Taste testing:

Aggregated scores for aroma, texture, juciness and flavour

Conclusion

- Digestates can perform at least as well as conventional feeds in strawberry production, with respect to both yield and consumer acceptability
- Need to run system at a pH appropriate to the individual digestate
 - Need to understand the relationship between feed pH and rootzone pH

Next steps...

- Test digestates using a conventional injection drip irrigation system
 - pH tailored to individual digestate
 - Do the emitters block?
- Experiment with nutrient/nitrate amendment

 Can the naturally high K, well buffered digestates be used unammended?

