CH159 - Part 2 Test
 Thursday, February 6, 2014

The time allowed for the test is $\mathbf{4 0}$ minutes.

Attempt every question giving your answers clearly in the space provided in black or blue ink.
Graphical calculators are not permitted.
The formula for solving a quadratic equation is: $\quad\left(x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}\right)$

Standard Derivatives

$$
\begin{array}{ll}
\frac{d}{d x} e^{x}=e^{x} & \frac{d}{d x} e^{a x}=a e^{a x} \\
\frac{d}{d x}(\sin x)=\cos x & \frac{d}{d x} \sin (a x)=a \cos (a x) \\
\frac{d}{d x}(\cos x)=-\sin x & \frac{d}{d x} \cos (a x)=-a \sin (a x) \\
\frac{d}{d x} \tan x=\frac{1}{\cos ^{2} x} & \frac{d}{d x} \tan a x=\frac{a}{\cos ^{2} a x} \\
\frac{d}{d x} \ln x=\frac{1}{x} & \frac{d}{d x}\left(e^{a x}\right)=a e^{a x}
\end{array}
$$

Standard Integrals

$$
\begin{array}{ll}
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c \quad(n \neq-1) & \int x^{-1} d x=\ln x+c \\
\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c & \int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c \\
\int e^{a x} d x=\frac{1}{a} e^{a x}+c & \int \ln x d x=x \ln x-x+c
\end{array}
$$

Taylor Series

$$
f(x)=f(a)+(x-a) f^{\prime}(a)+\frac{1}{2!}(x-a)^{2} f^{\prime \prime}(a)+\frac{1}{3!}(x-a)^{3} f^{\prime \prime \prime}(a)+\ldots
$$

1. All parts of this question refer to the complex numbers $c=2+3 i ; d=1-i ; k=-2 i ; m=4$
(a) plot c, d, k and m on an Argand diagram
(b) evaluate $c-3 d$
(c) evaluate $k \times c$
(d) evaluate $d \times c$
(e) evaluate $c \times c^{*}$
2. Evaluate the following, given the matrices

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 3 & 0 \\
-3 & 1 & 1 \\
2 & 4 & -1
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ccc}
1 & 2 & 0 \\
3 & -3 & 0 \\
2 & 1 & -1
\end{array}\right), \quad \mathbf{C}=\left(\begin{array}{cc}
5 & -1 \\
1 & 0 \\
0 & 3
\end{array}\right), \quad \mathbf{D}=\left(\begin{array}{cc}
2 & 4 \\
-1 & 1
\end{array}\right)
$$

(a) $\mathbf{A}+\mathbf{B}$
(b) AC
(c) $|\mathbf{D}|$
(d) $\quad \mathbf{B}^{\mathrm{T}}$
3. All parts of this question relate to the following simultaneous equations: $\begin{gathered}2 x+y=2 \\ x-2 y=6\end{gathered}$.
(a) write these simultaneous equations in matrix form
(b) Calculate the inverse of the matrix of coefficients
(c) Use the inverse matrix to solve the simultaneous equations
4. Given the matrix $\mathbf{M}=\left(\begin{array}{ll}2 & 3 \\ 5 & 4\end{array}\right)$:
(a) calculate the eigenvalues of \mathbf{M}
(b) hence find the two eigenvectors of \mathbf{M}
5. (a) Given the vectors \mathbf{a} and \mathbf{b}, below, draw the vector $\mathbf{a}-\mathbf{b}$

a

(b) Given the vectors $\mathbf{v}=\mathbf{i}+3 \mathbf{j}-2 \mathbf{k}$ and $\mathbf{u}=-2 \mathbf{i}+4 \mathbf{j}-\mathbf{k}$, evaluate the following:
(i) $\mathbf{v}-\mathbf{u}$
(ii) $2 \mathbf{u}$
(iii) $\mathbf{u} \cdot \mathbf{v}$
[2]
(iv) $\mathbf{u} \times \mathbf{v}$
6. (a) Write out the Taylor series expansion for $U(x)=\frac{1}{x^{12}}-\frac{2}{x^{6}}$ about the point $x=1$, giving the first four terms.
(b) Hence evaluate $\mathrm{U}(1.01)$ to four decimal places without using your calculator.

