CH159 – Part 2 Test Thursday, February 6, 2014

The time allowed for the test is 40 minutes.

Attempt every question giving your answers clearly in the space provided in **black** or **blue** ink.

Graphical calculators are not permitted.

The formula for solving a quadratic equation is:

$$\left(x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}\right)$$

Standard Derivatives

$$\frac{d}{dx}e^{x} = e^{x}$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}\cos(ax) = -a\sin(ax)$$

$$\frac{d}{dx}\cos(ax) = -a\sin(ax)$$

$$\frac{d}{dx}\tan x = \frac{1}{\cos^{2} x}$$

$$\frac{d}{dx}\tan x = \frac{1}{\cos^{2} ax}$$

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax}$$

Standard Integrals

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + c \quad (n \neq -1) \qquad \qquad \int x^{-1} dx = \ln x + c$$

$$\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c \qquad \qquad \int \sin(ax) dx = -\frac{1}{a} \cos(ax) + c$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + c \qquad \qquad \int \ln x \, dx = x \ln x - x + c$$

Taylor Series

$$f(x) = f(a) + (x - a)f'(a) + \frac{1}{2!}(x - a)^2 f''(a) + \frac{1}{3!}(x - a)^3 f'''(a) + \dots$$

1. All parts of this question refer to the complex numbers $c = 2+3i$; $d = 1-i$; $k = -2i$; $m = 4$		
(a)	plot <i>c</i> , <i>d</i> , <i>k</i> and <i>m</i> on an Argand diagram	[3]
(b)	evaluate $c - 3d$	[1]
(c)	evaluate $k \times c$	[2]
(d)	evaluate $d \times c$	[2]
(e)	evaluate $c \times c^*$	[2]

2. Evaluate the following, given the matrices

2. Evaluate the following, given the matrices

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 0 \\ -3 & 1 & 1 \\ 2 & 4 & -1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 1 & 2 & 0 \\ 3 & -3 & 0 \\ 2 & 1 & -1 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} 5 & -1 \\ 1 & 0 \\ 0 & 3 \end{pmatrix}, \quad \mathbf{D} = \begin{pmatrix} 2 & 4 \\ -1 & 1 \end{pmatrix}$$

(a) $\mathbf{A} + \mathbf{B}$

(c) $|\mathbf{D}|$

(b)

AC

[2]

[2]

[3]

(d) \mathbf{B}^{T}

[1]

- 3. All parts of this question relate to the following simultaneous equations: 2x + y = 2(a) write these simultaneous equations in matrix form [2]
- (b) Calculate the inverse of the matrix of coefficients [3]

(c) Use the inverse matrix to solve the simultaneous equations [3]

4. Given the matrix $\mathbf{M} = \begin{pmatrix} 2 & 3 \\ 5 & 4 \end{pmatrix}$: (a) calculate the eigenvalues of \mathbf{M}

(b) hence find the two eigenvectors of **M**

[4]

5. (a) Given the vectors **a** and **b**, below, draw the vector $\mathbf{a} - \mathbf{b}$

[2]

- (b) Given the vectors $\mathbf{v} = \mathbf{i} + 3\mathbf{j} 2\mathbf{k}$ and $\mathbf{u} = -2\mathbf{i} + 4\mathbf{j} \mathbf{k}$, evaluate the following:
 - (i) **v u** [2]

- (iii) $\mathbf{u} \cdot \mathbf{v}$ [2]
- (iv) $\mathbf{u} \times \mathbf{v}$ [3]

6. (a) Write out the Taylor series expansion for $U(x) = \frac{1}{x^{12}} - \frac{2}{x^6}$ about the point x=1, giving the first four terms. [5]

(b) Hence evaluate U(1.01) to four decimal places without using your calculator. [3]