CH159b; Maths Part 2; Matrices—simultaneous equations and determinants Problems

1 evaluate the following matrix products

(a)
$$\begin{pmatrix} 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} =$$
 (b) $\begin{pmatrix} 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix} =$ (c) $\begin{pmatrix} 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 2 \end{pmatrix} =$

(d) (e) (f)
$$\begin{pmatrix} 2 & 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 3 \end{pmatrix} =$$

2 express the following sets of simultaneous equations in matrix notation

(a)
$$x-y=3$$
 (b) $x+y=-3$ (c) $3u+2v=2$ $2x-y=4$ $2u-y=-2$

$$x+y+z=1$$
 $2x+y=1$ (d) $2x-y+2z=2$ $x-2y-z=3$ $2x+z=1$

find the inverse of the following matrices, and verify that they satisfy $\mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{1}$

(a)
$$\begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$ (c) $\begin{pmatrix} 0.8 & 0.6 \\ -0.6 & 0.8 \end{pmatrix}$ (d) $\begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$

Hence solve the following sets of simultaneous equations

(a)
$$2x+3y=1$$

 $3x+4y=2$
(b) $y-2u=1$
 $3y+4u=5$

(c)
$$0.8x + 0.6y = 1$$

 $-0.6x + 0.8y = 2$
 (d) $2u + 3v = 0$
 $4u + 6v = 0$

4 Evaluate the following determinants

(a)
$$\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$$
 (b) $\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$ (c) $\begin{vmatrix} 2 & 3 \\ 5 & 10 \end{vmatrix}$

(d)
$$\begin{vmatrix} 2 & 4 \\ 5 & 10 \end{vmatrix}$$
 (e) $\begin{vmatrix} 1 & 2 & -1 \\ 1 & 3 & 2 \\ 1 & -2 & 1 \end{vmatrix}$ (f) $\begin{vmatrix} 1 & 2 & -2 \\ 1 & 3 & 4 \\ 1 & -2 & 2 \end{vmatrix}$

Answers

- 1 evaluate the following matrix products
 - (a) 4
- (b) 5
- (c) 0

- (d) 3
- (e) can't!
- (f) (more accurately: not in this course)

can't

- 2 express the following sets of simultaneous equations in matrix notation

 - (a) $\begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ (b) $\begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ (c) $\begin{pmatrix} 3 & 2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$
- - (d) $\begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & 2 \\ 1 & -2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ (e) $\begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & -2 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$
- find the inverse of the following matrices, and verify that they satisfy $\mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{1}$ 3

 - (a) $\begin{pmatrix} -4 & 3 \\ 3 & -2 \end{pmatrix}$ (b) $\begin{pmatrix} 0.4 & 0.2 \\ -0.3 & 0.1 \end{pmatrix}$ (c) $\begin{pmatrix} 0.8 & -0.6 \\ 0.6 & 0.8 \end{pmatrix}$ (d) undefined

Hence solve the following sets of simultaneous equations

(a)
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

(b) $\begin{pmatrix} y \\ u \end{pmatrix} = \begin{pmatrix} 1.4 \\ .2 \end{pmatrix}$

(c)
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -0.4 \\ 2.2 \end{pmatrix}$$

- (d) many solutions: u = -1.5v
- 4 Evaluate the following determinants
 - (a) 1

(b) -1

(c) 5

(d) 0

(e) 14

(f) 28