CH159 - Part b Test
 Answer sheet for practice tests

The time allowed for the test is $\mathbf{4 0}$ minutes.

Attempt every question giving your answers clearly in the space provided in black or blue ink.
Graphical calculators are not permitted.
The formula for solving a quadratic equation is: $\quad\left(x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}\right)$

Standard Derivatives

$$
\begin{array}{ll}
\frac{d}{d x} e^{x}=e^{x} \frac{d}{d x} e^{a x}=a e^{a x} \\
\frac{d}{d x}(\sin x)=\cos x & \frac{d}{d x} \sin (a x)=a \cos (a x) \\
\frac{d}{d x}(\cos x)=-\sin x & \frac{d}{d x} \cos (a x)=-a \sin (a x) \\
\frac{d}{d x} \tan x=\frac{1}{\cos ^{2} x} \frac{d}{d x} \tan a x=\frac{a}{\cos ^{2} a x} & \\
\frac{d}{d x} \ln x=\frac{1}{x} \quad \frac{d}{d x}\left(e^{a x}\right)=a e^{a x} &
\end{array}
$$

Standard Integrals

$$
\begin{array}{ll}
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c \quad(n \neq-1) & \int x^{-1} d x=\ln x+c \\
\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c & \int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c \\
\int e^{a x} d x=\frac{1}{a} e^{a x}+c & \int \ln x d x=x \ln x-x+c
\end{array}
$$

Taylor Series

$$
f(x)=f(a)+(x-a) f^{\prime}(a)+\frac{1}{2!}(x-a)^{2} f^{\prime \prime}(a)+\frac{1}{3!}(x-a)^{3} f^{\prime \prime \prime}(a)+\ldots
$$

Practice Test 1

1. Evaluate the following, given the matrices
$\mathbf{A}=\left(\begin{array}{ccc}0 & 1 & -1 \\ 2 & 2 & 1 \\ 1 & 3 & -1\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ccc}1 & 2 & 0 \\ 0 & -3 & 1 \\ 1 & 3 & 1\end{array}\right), \quad \mathbf{C}=\left(\begin{array}{ll}1 & 2 \\ 1 & 1 \\ 1 & 3\end{array}\right), \quad \mathbf{D}=\left(\begin{array}{cc}1 & -4 \\ 2 & 3\end{array}\right)$
(a) $\mathbf{A}+\mathbf{B}$
(b) AC
(c) $\quad|\mathbf{D}|$
(d) $\quad \mathbf{B}^{\mathrm{T}}$
2. All parts of this question relate to the following simultaneous equations: $\begin{aligned} 2 x-3 y & =1 \\ x+2 y & =3\end{aligned}$.
(a) write these simultaneous equations in matrix form
(b) Calculate the inverse of the matrix of coefficients
(c) Use the inverse matrix to solve the simultaneous equation
3. Given the matrix $\mathbf{M}=\left(\begin{array}{ll}4 & 2 \\ 3 & 3\end{array}\right)$:
(a) calculate the eigenvalues of \mathbf{M}
(b) hence find the two eigenvectors of \mathbf{M}
4. All parts of this question refer to the complex numbers $c=2+3 i ; d=1-i ; k=2 i ; m=4$ (a) plot c, d and m on an Argand diagram
(b) evaluate $c+2 d$
(c) evaluate $k \times d$
(d) evaluate $c \times d$
(e) evaluate $c \times c^{*}$

- -

- -

6. All parts of this question refer to the complex numbers $c=2+3 i ; d=1-i ; k=2 i ; \quad m=4$
(a) plot c, d and m on an Argand diagram
(b) evaluate $c+2 d$
$4+i$
(c) evaluate $k \times d$
(d) evaluate $c \times d$
(e) evaluate $c \times c^{*}$

Practice Test 2

1. Evaluate the following, given the matrices
$\mathbf{A}=\left(\begin{array}{ccc}1 & 2 & -1 \\ 2 & 0 & 1 \\ 4 & 3 & -1\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ccc}3 & 1 & 2 \\ 1 & -3 & 0 \\ 2 & 2 & 1\end{array}\right), \quad \mathbf{C}=\left(\begin{array}{ccc}0 & 2 & 1 \\ 1 & 1 & -1\end{array}\right), \quad \mathbf{D}=\left(\begin{array}{cc}1 & -2 \\ -1 & 2\end{array}\right)$
(a) $\mathbf{A}-\mathbf{B}$ [2]
(b) CB [3]
(c) $|\mathbf{D}|$
(d) $\quad \mathbf{B}^{\mathrm{T}}$
2. All parts of this question relate to the following simultaneous equations: $\begin{gathered}2 x-2 y=-4 \\ x+3 y=2\end{gathered}$.
(a) write these simultaneous equations in matrix form
(b) Calculate the inverse of the matrix of coefficients
(c) Use the inverse matrix to solve the simultaneous equations
3. Given the matrix $\mathbf{M}=\left(\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right)$:
(a) calculate the eigenvalues of \mathbf{M}
(b) hence find the two eigenvectors of \mathbf{M}
4. Evaluate the following, given the matrices
$\left.\mathbf{A}=\left(\begin{array}{ccc}1 & 2 & -1 \\ 2 & 0 & 1 \\ 4 & 3 & -1\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ccc}3 & 1 & 2 \\ 1 & -3 & 0 \\ 2 & 2 & 1\end{array}\right), \quad \mathbf{C}=\left\lvert\, \begin{array}{ccc}0 & 2 & 1 \\ 1 & 1 & -1\end{array}\right.\right), \quad \mathbf{D}=\left(\begin{array}{cc}1 & -2 \\ -1 & 2\end{array}\right)$
$\begin{array}{lll}\text { (a) } & \mathbf{A}-\mathbf{B} & {[2]} \\ \text { (b) } & \mathbf{C B} & {[3]} \\ \text { (c) } & |\mathbf{D}| & {[2]} \\ \text { (d) } & \mathbf{B}^{\mathrm{T}} & {[1]}\end{array}$
5. All parts of this question relate to the following simultaneous equations: $\begin{gathered}2 x-2 y=-4 \\ x+3 y=2\end{gathered}$.
(a) write these simultaneous equations in matrix form
(b) Calculate the inverse of the matrix of coefficients
(c) Use the inverse matrix to solve the simultaneous equations
6. Given the matrix $\mathbf{M}=\left(\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right)$:
(a) calculate the eigenvalues of \mathbf{M}
(b) hence find the two eigenvectors of \mathbf{M}
7. All parts of this question refer to the complex numbers $c=1+4 i ; \quad d=2-3 i ; k=i ; m=2$
(a) plot c, d and m on an Argand diagram
(b) evaluate $3 c-d$
(c) evaluate $k \times c$
(d) evaluate $c \times d$
(e) evaluate $d \times d^{*}$

Practice Test 3

1. Evaluate the following, given the matrices
$\mathbf{A}=\left(\begin{array}{ccc}1 & 4 & 10 \\ 3 & 2 & -2 \\ 2 & 0 & 1\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ccc}-2 & 3 & 1 \\ 0 & 0 & 2 \\ 2 & -1 & 3\end{array}\right), \quad \mathbf{C}=\left(\begin{array}{lll}2 & 0 & -2 \\ 4 & 1 & -1\end{array}\right), \quad \mathbf{D}=\left(\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right)$
(a) $\mathbf{A}-\mathbf{B}$
(b) DC
(c) $|\mathbf{D}|$
(d) $\quad \mathbf{B}^{\mathrm{T}}$
2. All parts of this question relate to the following simultaneous equations: $\begin{gathered}x-3 y=8 \\ 2 x+y=2\end{gathered}$.
(a) write these simultaneous equations in matrix form
(b) Calculate the inverse of the matrix of coefficients
(c) Use the inverse matrix to solve the simultaneous equations
3. Given the matrix $\mathbf{M}=\left(\begin{array}{ll}3 & 2 \\ 3 & 4\end{array}\right)$:
(a) calculate the eigenvalues of \mathbf{M}
(b) hence find the two eigenvectors of \mathbf{M}
(b)

4. (a) Write out the Taylor series expansion for $x \ln x$ about the point $x=1$, giving the first four terms.
(b) Hence evaluate $\ln (1.1)$ to two decimal places without using your calculator.
function and derivatives
$f(x)=x \ln x$

$$
f(x)=0
$$

$\frac{d f}{d x}=\ln x+1$

$$
\frac{d f}{d x}=1
$$

$\frac{d^{2} f}{d x^{2}}=\frac{1}{x}$
$\frac{d^{2} f}{d x^{2}}=1$
$\frac{d^{3} f}{d x^{3}}=\frac{-1}{x^{2}}$

So the Taylor series is

$$
\begin{aligned}
f(x) & =0+(x-1) 1+\frac{1}{2}(x-1)^{2}(1)+\frac{1}{6}(x-1)^{3}(-1) \\
& =(x-1)+\frac{1}{2}(x-1)^{2}-\frac{1}{6}(x-1)^{3}
\end{aligned}
$$

(b) Hence evaluate $\ln (0.9)$ to four decimal places without using your calculator. use Taylor series; if $x=1.1$, then $(x-1)=0.1$

$$
\begin{aligned}
f(x) & =0.1000+0.0050-0.00017 \\
& =0.1033
\end{aligned}
$$

6. All parts of this question refer to the complex numbers $c=2+3 i ; \quad d=1+2 i ; k=5 i ; m=$ -2 (a) plot c, d and m on an Argand diagram
(b) evaluate $2 c-d$ [1]
(c) evaluate $k \times c$ [2]
(d) evaluate $c \times d$ [2]
(e) evaluate $d \times d^{*}$
