It is given that  $f(x) = \frac{6}{x^2} + 2x$ .

(ii) Find 
$$f''(x)$$
. [2]

Given that  $y = 2x^5 + 7 + \frac{1}{x^3}$ ,  $x \ne 0$ , find, in their simplest form,

(a) 
$$\frac{dy}{dx}$$
, (3)

(b) 
$$\int y \, dx$$
.

The curve C has equation

$$y = \frac{1}{2}x^3 - 9x^{\frac{3}{2}} + \frac{8}{x} + 30, \quad x > 0$$

(a) Find 
$$\frac{dy}{dx}$$
.

(b) Show that the point P(4, -8) lies on C. (2)

(c) Find an equation of the normal to C at the point P, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

Given that

$$y = 8x^{3} - 4\sqrt{x} + \frac{3x^{2} + 2}{x}, \quad x > 0$$
 find  $\frac{dy}{dx}$ .

Differentiate the following expressions (with respect to x):

1. 
$$(8x+7)e^x$$

2. 
$$\ln(6x^2+2x+5)$$

1. 
$$(8x+7)e^x$$
  
2.  $\ln(6x^2+2x+5)$   
3.  $\sin(-5x^2-8x+2)$   
4.  $(-7x^2-5x)\cos x$   
5.  $e^{x^2-8x+7}$ 

4. 
$$(-7x^2-5x)\cos x$$

5. 
$$e^{x^2-8x+7}$$

6. 
$$(4x^2 - 3x - 7) \ln x$$

Integrate the following expressions (with respect to x):

1. 
$$(x+9)^3$$

2.  $\sin x \ln(\cos x)$ 

3. 
$$2x\sqrt{1+x^2}$$
  
4.  $e^{\cos x}\sin x$ 

4. 
$$e^{\cos x} \sin x$$

5. 
$$x^2 \sin x$$
6.  $e^x \cos x$ 

6. 
$$e^x \cos x$$